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Résumé

Le mélange controle de multiples phénomenes naturels et industriels. De maniere directe, lors du
transport intracellulaire ou des échanges de gaz dans les poumons, ou indirectement, dans des
processus entrainés par la rencontre de différentes entités: par exemple, les microbes et leurs nu-
triments ou les especes impliquées dans une réaction chimique. Lorsque le mélange se produit
dans des environnements confinés, caractérisés par la présence de barrieres imperméables, tel que
les systemes poreux, l'organisation spatiale des especes differe de celle observée pour des systemes
non confinés. Cette these vise a étudier I'impact d’un tel confinement sur l'état et la vitesse du
mélange: pour les systemes poreux, le mélange est controlé par ’action combinée de i) 'advection,
qui déplace les solutés tout en modifiant la forme de l'interface ot les gradients sont distribués, et
ii) la diffusion moléculaire, qui lisse les gradients de concentration par transfert fickien de masse.

Comme il sera abordé dans cette thése le confinement a un impact sur ces deux processus.

Nous utilisons la solution analytique de I’équation de diffusion unidimensionnelle pour un domaine
spatial de taille fini afin de quantifier I'impact du confinement sur plusieurs mesures de mélange.
Nous montrons que la solution dans un domaine confiné avec un flux nul comme conditions aux
limites impose une nouvelle échelle de temps, caractérisant le mélange limité par le confinement et
controlé par diffusion qui est nettement plus court que 1’échelle de temps diffusive caractéristique
dans un domaine non confiné. Ces observations montrent que le mécanisme d’homogénéisation

par diffusion est renforcé par la présence de barrieres imperméables.

Dans la seconde partie de la these, nous proposons une nouvelle méthode de mesure du coefficient
de diffusion d'un traceur basée sur 1’évolution spatio-temporelle du champ de concentration du
traceur considéré. La mesure consiste a ajuster la solution analytique de I'équation de diffusion au
profil mesuré, en prenant explicitement en considération la nature confinée du dispositif de mesure
et en utilisant un unique parametre d’ajustement: le coefficient de diffusion lui-méme. La méthode

proposée fournit une estimation pour D avec une intervalle de confiance de 3%.

Afin de prendre explicitement en considération le role joué par un champs d’écoulement hétérogene,
nous utilisons des méthodes expérimentales (microfluidique, microscopie avec prise de vue a inter-
valles réguliers) ainsi que des simulation numériques afin d’étudier le transport par écoulement
laminaire. Nous montrons que les modeéles récents développés pour décrire le mélange d'un soluté

transporté par des champs d’écoulement hétérogenes dans un milieu continu (ne tenant pas compte

PhD thesis - Mayumi Hamada



III

du confinement) ne permettent pas de prédire nos observations a 1’échelle du pore. En particulier
ces modeles reposent sur I’hypothése que le mélange est localement controlé par la diffusion dans
un domaine non confiné qui, comme nous l'avons démontré dans cette thése, est quantitativement
et qualitativement différent de ce qui est observé dans les espaces confinés. Ce résultat démontre
la nécessité de développer un modele de mélange a I’échelle du pore qui tienne compte a la fois
des barrieres solides et imperméables et de cinématique locale de 1’écoulement qui régit 1’étirement

local du fluide.
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Abstract

Mixing controls a plethora of natural and industrial phenomena. Directly, as intracellular transport
and gas exchange in the lungs, or indirectly, in processes that are driven by the encounter of dif-
ferent entities: e.g., microbes and nutrients or species involved in chemical reactions. This thesis
focuses on the impact of physical confinement on mixing dynamics: for porous systems, mixing is
controlled by the combined action of i) molecular diffusion, that smear these gradients by Fickian
mass transfer and ii) advection, that displaces solutes modifying their interface where gradients are

distributed. Confinement impacts both these processes as shown and discussed in this thesis.

We use the analytical solution of a one-dimensional diffusion equation for a finite spatial domain
to quantify the impact of confinement on several mixing measures. We show that the solution
in a confined domain with no-flux boundary conditions imposes a new timescale characterizing
confinement-limited mixing controlled by diffusion which is significantly shorter than the charac-
teristic diffusive timescale in an unconfined domain. These observations indicate that the diffusive

homogenization mechanism is enhanced by the presence of impermeable boundaries.

Then, we propose a novel method to measure the diffusion coefficient D of tracers, based on the
spatio-temporal evolution of the concentration field of the considered tracer. The measurement
consist in fitting the analytical solution of the diffusion equation to the measured profile, taking
into explicit consideration the confined nature of the setup and having as sole fitting parameter the
diffusion coefficient itself. The proposed method provides estimation for D with uncertainty down

to 3% and it has been validated with a tracer of known D.

To take into explicit consideration the role played by heterogeneous advection, we use experiments
(microfluidics, time-lapse video-microscopy) and numerical simulations to study solute transport
by laminar flow. We show that recent models developed to describe mixing by heterogeneous
and continuous flow fields (neglecting confinement) fail to predict our pore-scale observations. In
particular, the building block of these models lies on the assumption that locally mixing is controlled
by diffusion in a unconfined domain that, as we demonstrated in this thesis, is quantitatively and
qualitatively different from the one taking place within confined spaces. This result indicates that
pore-scale models for mixing must consider the presence of solid impermeable boundaries and the

detailed flow kinematics that governs the local fluid stretching.

PhD thesis - Mayumi Hamada



Contents

1 Introduction
1.1 Porous media structure and flow heterogeneity . . . ... ... ... ... .......
111 Darcyscale . .. ... ... ...
1.1.2 Porescale . . ... . . . e
1.2 Solute transport . . . . . . ...
1.3 Mixing . . . . ..
1.4 Heterogeneous advection induces complex stretching kinematics . . . . ... ... ..
1.5 Thesis organisation . . . . .. ... ...
2 Diffusion limited mixing in confined media
2.1 Introduction . . . . . . . .
22 Results . . . . e
221 Unconfined case . . . . . . . . . . .
222 Confined case . . . . . . . . e
23 Impact . . ...
24 Conclusions . . . . . ...
3 Novel method to measure diffusion coefficient of tracers
3.1 Introduction . . . . . . . . . .
32 Method . . . . . . ..
3.2.1 Fluorescent particles tracer . . . .. ... ... ... ... ... ... .. ...
322 Colored tracer . . . . . . . . . L
323 Flowcell . . ..
3.24 Optical system and image processing . . . . .. ... ...............
325 Theoretical estimate of D . . . . . . . . ... ...
3.2.6 Solution of diffusion equation . .. ... ... ... ... ... ... .. ... ..
327 Dilutionindex. . . . . . ...



CONTENTS VI

33 Results . . ... e 45
3.3.1 Polystyrene fluorescent particles . . . . .. ........ ... ... .. ..., 45

3.3.2 Methylenebluedye . ... .. ... ... .. ... .. ... . . . 46

34 Discussion . . .. ... ... 46

4 Impact of confinement on mixing within porous media front: laboratory experiment 49
41 Introduction . . ... ... .. ... e 49
42 Pore scale measurements of concentration field . . ... .. ... ... .. .. ... .. 50
421 Flowecell . .. .. e 50

422 Tracer. . . . . . . . e 51

423 Optical system and image processing . . . . .. . ... ... ........... 53

424 Procedure . ... ... ... 54

43 Results . . . . . 54
44 Conclusion . . . . . ... . e 57

5 Impact of confinement on mixing within porous media: numerical simulations 59
51 Introduction . . ... .. ... ... e 59
52 Method . . . . . . . 60
5.2.1 Numerical solution for fluid flow and advective transport . . . . ... ... .. 60

5.2.2 Numerical simulation of transport . . . . . ... .. ..... ... ... ... 65

523 Particletracking . . .. ... ... ... L 66

53 Resultsand discussion . . . . ... ... L Lo Lo 67
531 Darcyscale . ... ... ... ... e 67

532 Porescale . .. ... . ... 71

5.3.3 On the role of confinementonmixing . . . . ... ... .............. 73

54 Conclusion . . . . . ... . e 80

6 Conclusions 83

PhD thesis - Mayumi Hamada



Chapter 1

Introduction

1.1 Porous media structure and flow heterogeneity

Water flowing through the subsurface originates from various sources such as rainfall precipitations,
snow melt or bed seepage from rivers and open-water reservoirs. It travels through a succession of
solid matrix typically porous or fractured media (Fig. 1.1.a.). While fractured media are typically
consolidated and low permeability rocks that underwent fracturing due to natural (e.g. seismic)
or induced (as fracking) stresses, porous media are composed of aggregated materials, often sedi-
ments, separated by void spaces, also called pores. Flowing water naturally contains dissolved or
suspended compounds, that are either inert and thus passively transported or they can react be-
tween them or with the solid substrate. It is in the pore space that transport and mixing processes
occur controlling chemical and biological reactions such as ion-exchange, dissolution and precipita-
tion, bio-mineralization or biofilm growth. Figure 1.2.d. shows an example of biofilm development

in the pore space.

Natural substrates exhibit a wide spectrum of pore sizes A with typical values ranging between
107® — 1072 m [2]. The amount of water that can be stored in the pore space is defined by the

porosity of the host medium:

volume of pores

" ‘total volume of solids and pores (1)

¢

which spans from few percent in some metamorphic rocks up to 70% in clay deposits [3, 4]. Sub-
surface layers, often classified as a function of their saturation degree, are distinguished between:
the vadose zone where pores are filled with both air and water, and the saturated zone where the

pore are filled with water only (Fig. 1.1.b.). Usually water in the saturated zone is referred to as
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groundwater [3, 5]. In porous media, such as soils or sediments, the solid matrix is composed of
grains (made of organic and/or mineral material) more or less packed together. The heterogeneity
of the grain size distribution heavily impacts porosity value ¢: as illustrated in Fig. 1.2.b. poorly

sorted deposits typically results in low porosity while well sorted material in higher values [3].

Very often, grains themselves are porous (Fig. 1.2.a.) and their own porosity is negligible with re-
spect to the one of the ensemble [8, 9]; in some other scenario it increases the total porosity of the
deposit [10]. Solutes and organic material diffuse into individual grains due to the concentration
gradient between pore and intragranular water. It has been shown that for sorbing / reacting mate-
rials the intragranular surface represents a significant fraction of total reaction site available, leading

to a stronger dispersion with respect to non-reactive solutes [10, 9].

At macroscopic scale the average flow velocity value can vary from 10 (e.g. crystalline rock) to 2
m/day (e.g. gravel) [3] depending on the substrate type. Those values are much smaller than the

one observed in turbulent systems, typically of the order of 1 m/s [11]. Traditionally flow is classi-

a. rainfall b.
river bed seepage l
vadose zone
-
vv“ N
Floodplain & L
R W
Stream channel Unsat d
nsaturate
zone
/_ Groundwater
table
Saturated
zone & q

>

saturated zone

Figure 1.1: a. Example of water pathway to the subsurface: rainfall infiltration and river bed seepage,
once it has reached the subsurface water travels through the saturated and unsaturated zone. b.
Porous medium is a typical subsurface substrate, it is composed of an ensemble of grains more or
less packed together, the void between the grains is called the pore space. In the vadose zone pores
are filled with both air and water, in the saturated zone with water only. Figure adapted from [1]
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1.1. POROUS MEDIA STRUCTURE AND FLOW HETEROGENEITY 3

fied between laminar regime, where viscous forces dominates with respect to inertia and turbulent
one in which inertia is more important. The ratio between viscous and inertial forces driving fluid
motion is quantified by the Reynolds number Re = pu A/u, with u the flow velocity magnitude,
p and p the fluid density and viscosity. Laminar flow regimes, typical for porous media flow, are
characterized by low Reynolds number Re < 10~! and thus exhibit low flow velocity and small char-
acteristic length A. Therefore in confined media fluid motion is bound by the host matrix structure
and solute transport by the impermeable boundary it imposes. In the following we define confined
media as systems in which the host medium sets the characteristic scale of fluid flow and mass
flux. Recently developed technology, such as X-ray tomography [12] or microfluidics [13, 14, 15] and
numerical schemes [16] allowed researchers to study flow structure at microscopic scale. They show
that fluid transported through such heterogeneous material experiences flow velocity values that

spans over several order of magnitude and variations are observed at the sub-millimeter scale and

a. b. C.
Well-sorted sandstone OV L \) (
Y " N\ 7
O ~
\, /,"/ e
> ’-\V > ‘\ y
A/ | =
- )
1 v - ~
\ P | -— (
\ J N’ ~ N
\« | / ‘fx r -
4 \ 4 - i
—4 -3 -2 -1 0 1
d. e

W
LS 2STT o

Figure 1.2: a. Intragranular porosity provides reaction sites for ion-exchange, species access inner
grain area by diffusion, it can also contribute to the total porosity (adapted from [6]); b. Porosity
value is highly dependant on grain size distribution, narrow distribution is characteristic of high
porosity, while large variability of grain sizes leads to a lower porosity (adapted from [1]); c.
Simulated velocity field magnitude rescaled by the average velocity u is shown in a logarithmic
scale log10(u/u): in white u = %, in red u > u and in blue u < u (adapted from [7]); d. Pore space
colonized by P.Putida bacteria, fluorescent microscopy image; e. Conceptual model of porelet: each
pore throat has a velocity field with a parabolic profile, as in a tube (adapted from [7]).
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1.1. POROUS MEDIA STRUCTURE AND FLOW HETEROGENEITY 4

for very low Reynolds number [17, 18, 19, 20, 21]. Figure 1.2.c. shows, in a logarithmic scale, a nu-
merical simulation of a pore-scale velocity field magnitude, in this case the computed velocity spans
over five orders of magnitude. Micro-scale heterogeneity of the flow field has a dramatic impact
on numerous subsurface phenomena such as solute transport and mixing [22, 23], distribution of
the electrical conductivity field [24], reactive transport [25], filtration [26], oxygen distribution [27],

bacteria growth and motility [15, 28] or biofilm architecture [29].

Complexity of flow pattern increases when fluids of different phases, viscosity or density coexist:
this plays a critical role in an extensive range of processes such as water infiltration [30], displace-
ment of aqueous and non-aqueous phase pollutant [31, 32, 33, 34], chemical reaction rates [35] or
methane [36, 37] and CO, [38] migration. In several of these examples the presence of different fluid

phases can trigger time-dependant flow patterns.

The thesis aims to study the role of confinement on transport and mixing dynamics, to do so in a
systematic and rigorous way we consider a simplified view of porous medium diversity exhibiting
only the features that characterize confinement. Therefore, the processes approached in this thesis
are described for systems where the pore space is fully filled with water, usually referred to as
saturated flow conditions, the porous medium matrix has impermeable grains and the flow field

is invariant in time, referred to as steady state flow.

1.1.1 Darcy scale

The basic equation governing groundwater flow is given by the Darcy’s law [39] which states that
the flow rate through a porous medium Q is proportional to the the headloss Ah divided by the
length of the flow path L also called the hydraulic gradient:

Ah

Q=-KA—, (1.2)

where K, the hydraulic conductivity, has unit of m/s and is a property of both the medium and the
fluid, A is the cross-section area of the domain considered and 6k the difference of water elevation
between two observation wells separated by a distance L. The hydraulic conductivity defines the
ease of water to move through a porous or fractured medium: the diversity of substrate in the
subsurface offers a wide range of hydraulic conductivity values from 10713 to 1 m/s [3]. We define
an average flow velocity over the domain, the Darcy velocity, as 4 = Q/A in m/s. The hydraulic

conductivity K has been shown to be related to intrinsic permeability k, a property of the medium

PhD thesis - Mayumi Hamada



1.1. POROUS MEDIA STRUCTURE AND FLOW HETEROGENEITY 5

only, through k = K/ (p g) [4] with g the gravitational acceleration.

This formulation has been extended [2] to describe heterogeneous flow systems in which at each
location x the fluid velocity (x) is proportional to the local pressure gradient Vp(x) through an
effective medium permeability k(x). For a given set of physical boundary conditions, the pressure
p, related to the hydraulic head through p = pgh, can be numerically solved in terms of mass

balance and the fluid velocity derived from the extended Darcy law.

Within this framework the scale at which the system is resolved assumes a Representative Elemen-
tary Volume (R.E.V) over which host medium properties, such as porosity and permeability, are
considered homogeneous enough to be represented by an averaged value. This assumption is valid
for studies considering averaged flow properties, however in many cases it oversimplifies the de-
scription of flow pattern and, as mentioned in the previous section, leads to wrong predictions for

processes that depends on local velocity values.

The porous medium structure and morphology are lumped into the definition of a permeability
field for which heterogeneity and correlation degree is set a priori. However, it is defined for a
continuous domain, and so is the derived flow field: the intrinsic pattern of pore space and grains
organization is therefore lost. In particular, description of continuous flow field cannot consider the
no flow and no flux conditions prevailing around the grains of the matrix. The work presented
in this thesis aims to investigate the effect of such obstacles on solute diffusion and mixing

processes.

1.1.2 Pore scale

Taking into account the presence of solid obstacles one must solve the flow velocity field at the
scale that specifically considers zero flow velocity, in other words no-flow (or no-slip) boundary
conditions, at the water-grain interface: from now on we will refer to that as the pore scale. In this
framework, flow equations are set in terms of momentum and mass conservation, for Newtonian
fluids they are formulated by the Navier-Stokes equations [2] a set of partial differential equations
where inertia is balanced by the sum of forces acting on a fluid particle. For fluid flow characterized
by low Reynolds number, i.e. dominated by viscous effects (Re < 1), inertia can be neglected and

the formulation reduces to the so called Stokes equations:

Vp = u V2. (1.3)

PhD thesis - Mayumi Hamada



1.2. SOLUTE TRANSPORT 6

The above expression is valid for an horizontal plane, thus neglecting gravity, with i the local ve-

locity.

Stokes equations can be analytically solved for the case of flow in a single tube of radius R, referred
to as Hagen-Poiseuille flow, the symmetry of the problem along the main flow direction reduced

Eq. (1.3) to an integrable form. The solution defines the characteristic parabolic profile:
u(r) = - (R* =%, (1.4)

with v the fluid velocity along the tube radius. Velocity is maximum at the center of the tube and
zero at the tube walls (r = R). This simple parabolic profile actually describes also the flow profile

within a single pore throat, as schematically represented in Fig. 1.2.e.

Starting from this observation, novel approaches led to a new family of models, called pore-network
models, where the flow field breaks down to an ensemble of flow within tubes whose average is
controlled by the tubes radius distribution and their connectivity [40]. Following the same approach
a recent study [21] modeled low velocities in a porous medium as a collection of parallel pores, the
porelet, in which Poiseuille flow is solved. It has been shown that the distribution of low velocities
is controlled by the distribution of the pore size, directly linking flow heterogeneity to the medium

structure. Figure 1.2.e. illustrate the concept of porelet and its characteristic parabolic profile.

1.2 Solute transport

Within the context of porous media dissolved and suspended compounds are transported through
two main physical mechanisms: advection, where the mass is transported with the fluid at moving
velocity v and diffusion where the mass is transported through the fluid by the random motion
of compound molecules due to thermal agitation. Transport measurement and modelling aim to
determine the spatio-temporal dynamics of a concentration c(x, t), defined as the mass of solute
per volume of fluid in [kg/m?], in a given flow field, it have been used to monitor and asses
underground physical properties such as permeability, pore or fracture size orientation and connec-

tivity [23, 41] as well as to study processes such as mixing [42, 43] or infiltration [44, 45].
We defined in the previous section the different flow description used to model the velocity field in

PhD thesis - Mayumi Hamada



1.2. SOLUTE TRANSPORT 7

porous media. We will now describe the second mechanism of transport: diffusion.

Diffusion

Molecular diffusion of a given dissolved or suspended compound originates from the individual
molecules (or particles) motion that is associated to their thermal agitation, as observed by Brown
for the motion of pollen [46]: the macroscopic consequence of this microscopic phenomenon is that

the mass of that compound spreads in space as time passes.

The detailed description of molecular diffusion in terms of a mechanistic and physics-based model,
was revealed independently by Einstein [47], von Smoluchowski [48] and Sutherland [49] who show
that the thermal agitation of molecules results in a random walk whose statistics is reflected by the
tirst Fick’s law describing the macroscopic mass flux. This statistical and physics-based model
of random walk can be summarized as follows. The system is composed by a large number of

molecules (or particles) that:
1. step every T with a velocity v at a distance § = v T;
2. the direction of each jump is equally probable (for isotropic diffusion);

3. the motion of each molecule (or particle) is independent on the others.

The velocity v can be related to the kinetic energy and the system temperature as E = 3k T = 1mo?,

where k is the Boltzmann constant (expressed in [J/K]), m is the mass of the individual molecule
(or particle, expressed in [kg]) and T the absolute temperature (expressed in [K]). It is possible to
show [50] two main properties of such a defined system. The first is that the average displacement
of an ensemble of particles undergoing these three rules (the ones defining a random walk [51])
is zero at all times (after any number of steps), in other words the center of mass is not changing.
Then, the second centered spatial moment after n steps scales as n? = 2Dt, where t = n T and
D= ZO—ZT is a constant fixed by the system properties (molecule/particle size, but also fluid viscosity

and temperature) and it has units of [m?2/s].

Considering the kinetic energy associated to the thermal agitation of molecules/particles and the
viscous drag they experience moving within a fluid of viscosity y, it has been theoretically estimated
the value of the diffusion coefficient in terms of the well-known Stokes-Einstein relation [53]. For

spherical objects of radius r it reads:
kT

- 6rur

(1.5)

PhD thesis - Mayumi Hamada



1.2. SOLUTE TRANSPORT 8

From these microscopic rules for the motion of each individual molecule (or particle) composing
the diffusing substance, it is possible to compute its mass flux J(x) at location x as the difference
between the number N of particles moving from a location to the next one passing through the

surface A in a unit time as:

) = (N(x)_N(x—l-(S)) 1 __(c(x+5)_c<x)>§: Dg;, w6

2 2 AT 2 2

where we introduced the concept of substance concentration c, as the number of molecules (or par-
ticles) per unit volume ¢ = N/ (AJ), and we approximated the first spatial derivative (gradient) at
first order. Equation (1.6) is the well-known first Fick’s law that describes the macroscopic mass
transfer, stating that the diffusive mass flux is locally proportional to the concentration gradient.
The negative sign implies that mass moves from locations with higher concentration towards areas

of lower concentrations.

There are two main consequences of the first Fick’s law. First, in case of an homogeneous con-

high concentration

V2Dt —— 0.1 mm

Figure 1.3: a. Diffusion at microscopic scale: trajectory of a particle experiencing Brownian motion,
random displacement of the particle due to thermal agitation, the center of mass is invariant in time
and the variance of the displacement after n steps is given by § = /2D t/n with D the diffusion
constant (adapted from [52]); b. At macroscopic scale: microscopy image of a tracer diffusing
front in a rectangular cross-section channel, mass is displaced towards low concentration area until
the system reach homogeneity, black arrow indicates the direction of the mass flux, the temporal
evolution of the concentration is given by Fick’s law Eq. (1.8).
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1.2. SOLUTE TRANSPORT 9

centration distribution in space, there is no mass flux: this means that even though the individual
molecules (or particles) are moving due to thermal agitation, the net effect of their motion is not
detectable since it does not produce any change in the overall mass distribution. Second, if there
is a concentration gradient different from zero, a non-zero mass flux takes place: thus, the sub-
stance concentration changes also over time. To capture this dynamics it is necessary to invoke the

substance mass conservation that can be expressed as:

ac -
—~=-V-], 1.7
= J (17)
which is known also as the second Fick’s law: to every spatial change in mass flux is associated a
temporal change in concentration. In other words, if the concentration at location x varies, this is
due to a spatial variation in mass flux (mass that leaves or joins the location x). Combining the two

Fick’s laws we obtain the well known diffusion equation describing the spatio-temporal distribution

of a diffusing substance:
dc

=-D V- 1.8
o Ve (1.8)
Knowing the value of D is very important to describe the fate of a diffusing substance and all
the diffusion-related phenomena, like mixing or reactions. We will discuss a novel experimental

method to determine its value in Ch.3.

Transport equations

Considering advection and diffusion at the pore scale the spatio-temporal evolution of a solute
concentration c(x, f) in a flow field 7 is controlled by mass conservation principle, Eq. 1.7, where the
mass flux is given by the sum of an advective term —7 - Vc and a diffusive one D V?c as expressed

by the well-known advection-diffusion equation [54, 2]:

% = —7. Ve+DVZ, (1.9)
with D the molecular diffusion coefficient. The ratio of advection and diffusion effects is quantified
by the Péclet number Pe = A7/D with A a characteristic length of the system considered (e.g the
average pore size) and ¥ the average flow velocity at the scale considered. Typically systems char-

acterized by high Pe are controlled by advection, while a small Pe describes diffusion dominated

situations.

Describing transport at the larger scale, it is not possible to resolve the detailed structure of the
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1.3. MIXING 10

grains organisation while also capturing the porous system heterogeneity across a wide range of
spatial scales. Thus, the discrete and confined structure of the host medium is replaced by a contin-
uous permeability field and the solute spreading around the mean position of its front is described
by an effective dispersion coefficient D* that lumps together the effects of molecular diffusion and
velocity contrasts. In this effective framework and for a homogeneous porosity the mass flux ] is
given by an advective Darcy term 7 - Vc and a dispersive one D* V¢ leading to the well-known

advection-dispersion equation (ADE) [54, 2]:

gi = —§-Vc+ D* V. (1.10)

Also in this scenario a Pe number can be defined as Pe = A§/D* where A is the correlation length
of the permeability field and 7 the average Darcy velocity. This upscaled and macroscopic picture
proved to capture well average properties of transport such as breakthrough curves and concentra-
tion profiles, but it fails to describe phenomena that depends on small scale concentration values
as chemical reactions or biological activity, which depend on the ability of the system to bring

compounds close enough to interact: the mixing process.

1.3 Mixing

Mixing in porous media is relevant for numerous processes that involve passive or reactive trans-
port: such as contaminant transport [5], remediation of contaminated aquifer [55, 56, 57], ground-

water age determination [58, 59] or biofilm growth and bacterial colonization [60].

In a more general context, mixing is the result of mass transport and it is defined as the ensem-
ble of processes that brings, originally segregated substances, within the same volume [61, 62] by
smoothing concentrations, dissipating gradients [63] and increasing the system entropy [64]. The
key mechanisms controlling mixing in liquid systems are: i) advection, transport by the surrounding
fluid motion and ii) molecular diffusion, random displacement due to thermal fluctuation, which

tends to smooth concentration gradients [65, 66].

Mixing dynamics are connected to the observation support scale, defined as the size of the domain
for which medium properties and variables of interest values are considered. In the subsurface
the heterogeneous flow field spreads the transported solutes by contrast of velocities and typically,

interactions between heterogeneous advection and diffusion is lumped into an effective dispersion
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1.3. MIXING 11

coefficient to describe solutes spreading, considered as a proxy for an effective mixing [67, 68, 69].
However, spreading, resulting from the processes that modify the spatial extend of a concentration
field, is not mixing and so models based on dispersion measures proved to over predict the degree
and rate of mixing [70, 71]. It has been shown that small scale velocity fluctuations control mixing in
both confined media [65, 72, 63, 33, 73] and open-flow systems [74]. Other studies proved that such
property of porous media flows is responsible for the so called anomalous transport, characterized

by non-Fickian dispersion or long temporal tailing of breakthrough curves [68, 69, 43].

The question of support scale is particularly relevant when considering processes involving chemi-
cal or biological reactions: the species must be mixed at their own scale for the reaction to happen
and information about mixing state at such micro-scale cannot be solved when considering bulk
medium properties and effective dispersion coefficient. Figure 1.4 gives examples, visualized at two
different scale of reactive fronts displacing in porous media: they illustrate well that the product

formation is not homogeneous within the pore space. Figure 1.4.a. shows the concentration field

—————10 cm

a.

—— 1 cm

t=15s t=46s t=76s t=137s

Figure 1.4: a. Reactive front from a chemi-luminescent reaction displacing in a stokes flow field,
light intensity is a measure of mass of product, we note that product is heterogeneously distributed
within pores; b. Darcy scale visualization of a reactive front displacing in a heterogeneous porous
medium; product concentration increases from black to red; the transverse average of product, as
computed in classical ADE models, cannot represent the pore-scale value (adapted from [75]).
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1.4. HETEROGENEOUS ADVECTION INDUCES COMPLEX STRETCHING KINEMATICS 12

of the reaction product between an invading reactant and a resident one [75]. The host medium
is composed by fine glass beads (the pore space is too small to be visualized) with enclosures of
even one among which flow is stagnant. The authors show how while ADE reproduces well the
macroscopic (observed) transport of the invading reactant, it overpredicts the amount of reaction
product wrongly assuming an advanced degree of mixing at the pore level. Figure 1.4.b. shows
the light emitted by a chemi-luminescent reaction between an invading and a resident solute. The
pore space is fully resolved and we observe that the reaction product (the light) is heterogeneously
distributed at the micro-scale. The reactive front has a complex topology and dymanics that depend

on the detailed interplay between pore-scale advection and molecular diffusion.

The problem of pore-scale flow heterogeneity, incomplete mixing and its impact on reaction rate
is the topic of extended studies since the last 30 years, boosted by the constant development of
laboratory and numerical tools that allows to dive progressively within the micro-scale world. In
homogeneous geometries several studies considering transverse [71, 76] and longitudinal [77, 25]
mixing-controlled reactions showed that ADE framework for the macroscopic description of concen-
tration fields overestimates the amount of product due to the prevailing non well-mixed conditions
at pore-scale. In [71] the authors investigated the effect of grain size on mixing, in [76] they used the
concept of dilution as a measure of mixing and quantified its effect on reaction rates, in [77, 25] they
measured the reaction rate product of a bimolecular reaction and confront it with the prediction
of models assuming well-mixed conditions. For heterogeneous porous medium structure, similar
studies demonstrated that the micro-scale velocity fluctuations observed within the pore space in-
duce local stretching dynamics that triggers persistent concentration gradients, which leads to a
faster reaction rate, but smaller amount of reaction product, compared to the predictions made for

a continuous domain [78, 79].

1.4 Heterogeneous advection induces complex stretching kinematics

To characterize the stretching mechanism in a heterogeneous flow field let’s consider the concept of
lamella. Originally developed to define folding and stretching of a concentration blob in a turbulent
flow field [80, 81], it was later applied to describe mixing in laminar flow systems [82, 72] leading

to the development of cutting-edge models for mixing in porous media [22].
A lamella is defined as a strip of concentration, aligned with the flow direction, of width s(t) and
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1.4. HETEROGENEOUS ADVECTION INDUCES COMPLEX STRETCHING KINEMATICS 13

length I(t) (Fig. 1.5.b.). The strip is displaced by advection and because different points on the
strip move at distinct speed, the lamella experiences stretching in the longitudinal direction and,
to conserve its volume, compression in the transverse one. Considering diffusion, which tends to
spread the strip along its own transverse direction, we can describe the dynamics of the lamella

width s(t) as a balance between compression and diffusion rate [82]:

_ _ > 4y (1.11)

with D a diffusion coefficient. Figure 1.5.c. illustrates this dynamic: the lamella is compressed
under the effect of stretching until Eq. 1.11 balances, this is usually called the mixing time ¢; and is

defined as a function of the Pe through:
yits ~ B Pet/ 2B, (1.12)

with 7 the lamella stretching rate and B a positive number. Once mixing time is reached, the strip

width starts to grow diffusively and the concentration within the lamella decreases.

Finally, the global concentration field is defined as an ensemble of lamellae each experiencing a
different stretching and diffusion rate. Figure 1.5.a. gives an example of a plume of concentration
displaced in a Darcy flow field: one distinguish well the lamella topology and the stretching dy-
namic as the plume moves forward. As the lamellae grow under diffusion their concentration field
can overlap, at this point the system enters in the final phase of mixing process when the different

lamellae of the domain aggregates by diffusion.

10

10!

K 100
(1) ol =4
107!

2 025
o x =025

1072 -
10 10! 102 103 10* 10°

t1 t2 /%

Figure 1.5: a. Snapshot at two time steps of a concentration field displaced in a heterogeneous flow
tield (adapted from [22]); b. The conceptual model of lamella: a strip of concentration defined by a
width s(t) and a Gaussian transverse profile (adapted from [82]); c. Temporal evolution of a lamella
width s(t) for different permeability field variance o, we note the compression (typically follows a
t~1 decrease) and diffusion regime (follows a v/ increase) (adapted from [22]).
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1.5. THESIS ORGANISATION 14

The concept of lamella width is very important since it also defines a gradient scale, because it
gives the distance over which locally concentration varies: in other words the average concentration
gradient for each lamella can be defined as |Vc¢| = ¢ /s(t) (with ¢y the concentration of the injected
solute), therefore the dynamic of s(¢) controls |Vc¢| and, thus, mixing and other mixing related met-

rics such as scalar dissipation rate [83] or dilution index [64].

This lamellar description of mixing was rigorously defined at Darcy scale by [22], where starting
from the description of the temporal evolution of a single lamella, diffusion coupled to stretching,
and adding rules of lamellae aggregation, the authors describe the temporal evolution of the whole

concentration and gradient field distribution.

In order to move a step forward and describe the concentration field at pore scale, necessary to cor-
rectly predict reaction rate and product, one must consider an intrinsic property of porous media:

their confinement as previously introduced.

This thesis aims to investigate the role played by the presence of solid and impermeable walls
on diffusion and heterogeneous flow kinematics. We hypothesize that confinement impacts the
fundamental mechanisms of diffusion and stretching and that this will affect local concentration

values and, thus, concentration gradients and mixing driven processes.

1.5 Thesis organisation

In the second chapter we approach the question of one-dimensional diffusion, building block of
mixing process, by a theoretical analysis of the impact of no-flux boundary condition on the dif-
fusion dynamic. Then, in chapter three, we suggest a novel laboratory method to measure the
diffusion coefficient value of a solute (or a particle suspension), that requires no beforehand knowl-
edge on either the molecule of interest or the fluid. We move to more complex systems in chapter
four, where we developed a novel experimental set-up to visualize and measure the concentration
field at the pore scale of a displacing tracer in a heterogeneous porous medium structure. Finally, in
chapter five we confront our experimental results by means of flow and transport numerical simula-
tions at both Darcy and pore-scale and we analyse the local flow kinematics using particle tracking

simulation results.
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Chapter 2

Diffusion limited mixing in confined

media

The work presented in this chapter was published as a regular article in Physical Review Fluids:
M. Hamada, P. de Anna, and L. Cueto-Felgueroso. Diffusion limited mixing in confined media,

Phys. Rev. Fluids, 5:124502, 2020

2.1 Introduction

In both natural and industrial systems, and across scales, the ability of dissolved compounds to
react is controlled by the efficiency of the system to mix them, promoting their physical encounter.
In a quiescent fluid the mixing process is driven by the sole action of diffusion. In the presence of
advection (e.g a stirred mixture or a flowing solute) the mixing front stretches, due to heterogeneity
in flow velocities, while it diffuses, leading to the complex competition between these two effects,
the first increasing and the second reducing solute concentration gradients [84, 85]. This combined
action results in a mixing mechanism by which initially segregated substances are led to occupy
the same volume [61, 86]. Classical mixing measures, such as the scalar dissipation rate [87], the
degree of mixing [88] or the dilution index [64, 22] (a measure of the system entropy), are based

on the detailed knowledge of the spatial distribution of the solute concentrations and their gradients.

A mass conservation equation controls the spatio-temporal distribution of a passive tracer concen-

tration, ¢, through the well-known advection-diffusion equation [54, 85]:

% - Vet DV, 2.1)
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where D is the diffusion coefficient and i is the velocity field experienced by the tracer. Solving
Eq. (2.1) across several temporal and spatial scales is necessary to understand important scientific
questions (e.g. kinetics of reactions or microbial growth) and to address industrial (e.g. bioremedia-
tion, filtration) and societal issues (e.g. efficient design of water treatment solutions). In most prac-
tical applications, it is challenging to solve Eq. (2.1) via numerical simulation or measuring c across
relevant spatial/temporal scales. Thus, upscaling techniques that focus on the controlling physical
mechanisms to predict their larger scale impact have been developed, including volume averaging
methods [89] or statistical models, such as the continuous time random walk [65], multirate-mass-
transfer [65] or the lamellar framework [22]. The latter has been successfully applied to a wide
range of flow systems characterized with a different flow kinematics, as turbulent [90], chaotic [86]

or laminar flows [78, 79, 22].

In a lamellar framework, a transported scalar field is characterized by a displacing front organized
as an ensemble of thin and elongated structures, called lamellae, which are stretched and folded by
the background heterogeneous flow field and typically characterized by their length I(#) and width
s(t) [80]. An individual lamella undergoes the following geometrical changes, as it is moves: i) it
is displaced and stretched by the flow kinematics, ii) it diffuses along the front transverse direction
and iii) it eventually merges with another lamella to form larger lamella bundles [80, 86, 22]. The

model, then, solves Eq. (2.1) for a single lamella in a Lagrangian framework:

ac n ds oc 9%c
where n denotes the spatial coordinate in the direction perpendicular to the lamella, along which
diffusion takes place. Using the Ranz transform [80, 81], space is normalized by the lamella width
s(t), i = n/s(t) and time is expressed in terms of diffusion time s(t)2/D, f = D fotl/s(t’)zdt/.
Thus, mixing reduces to a one-dimensional diffusion problem:

dc 9%

ﬁ —_ ﬁ- (2-3)

The mixing driven by these processes is then modeled considering the dynamics of the average be-
tween several lamellae thicknesses that individually takes place only along the direction transverse
to the local front. This diffusion equation controls mixing-driven phenomena also in many other sit-
uations where a mixing front is steady (as in micro-reactors where solutes are injected side-by-side)

and the kinematics of fluid motion can be neglected. For continuous systems where a tracer can
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2.2. RESULTS 17

freely diffuse across space, an initial pulse or front of tracer would result in a diffusive profile with
Gaussian- or error function-like shape. However, several mixing-driven processes happen in media
characterized by confinement, such as capillary tubes, batch reactors or porous systems (as filters
or soils): in such scenarios the walls defining the confined domain, e.g. a capillary tube surface or
porous media grains, are considered impermeable. As a consequence, solutes within such confined
systems cannot diffuse freely, as they will experience the impermeable walls where no-flux bound-

ary conditions must be honored.

The goal of the present work is to describe the impact on mixing of the spatial distribution and
temporal evolution of a diffusive tracer in a quiescent fluid (no flow) within a system characterized
by confinement, such as reactors [80], porous or fractured media [79], and microfluidics [13, 15].
To do so we solve the one-dimensional diffusion equation with no-flux boundary conditions and
we assess the impact of the presence of boundaries on the following classical mixing measures: the
scalar dissipation rate €(t), the concentration ¢ and gradient V¢ (whose value we denote by g.), their
corresponding probability density functions (PDFs), p.(c) and p¢(gc) and the dilution index E(f).
Their results are all quantitatively and qualitatively different from the unconfined case. Our results
represent the building block of mixing models for more complex systems involving distributed

confinement size and fluid velocity heterogeneity.

2.2 Results

We study a one-dimensional system in which a tracer undergoes molecular diffusion, for two initial
configurations: at t = 0 the tracer is distributed either as a front or a pulse. These two initial
conditions are paradigmatic cases of interest since many, more complex, configurations can be
interpreted as a properly weighted statistical superposition of them. Furthermore, we consider two
scenarios: i) the system has infinite size, x € (—o0, +0c0), also called an unconfined case and ii) the
system has finite size, x € [0, A], also called a confined case. We introduce the following normalized
space, time and concentration:

X ~
-, t = —, 6 = —, 24
A D Co ( )

£ =
where A is the characteristic confinement length scale, Tp = %2 is the characteristic time for diffusion
and ¢ is the maximum solute concentration at t = 0. Dropping hats for simplicity of notation, the
spatio-temporal concentration distribution of a passive solute undergoing molecular diffusion is de-

scribed by Fick’s first law [91], stating that the mass flux is locally proportional to the concentration
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2.2. RESULTS 18

gradient and mass conservation, which together lead to the diffusion equation, here expressed in
terms of dimensionless quantities:
oc 9%

In addition to metrics involving explicitly the spatial extent of the diffusing tracer, a way to quantify
and characterize the system mixing is in terms of the tracer concentration distribution, or PDE. We
introduce it in terms of p.(c,t) dc, the probability of sampling a concentration value between ¢ and
¢ + dc when the spatial domain is sampled uniformly, as equal to the probability p,(x,t) dx to find a
given location between x and x + dx when sampling mass uniformly. We derive p(c, t) by inverting,

when possible, and differentiating the spatial dependence of the scalar profile c(x, t) obtaining:

pe(c, t)de = py(x,t)dx, thus p(c,t) = px(x,t)

ax(c, t) ‘ ‘

= (2.6)

In the configurations considered here, the profiles are invertible either on the full domain or on half
of it. In that case they are also symmetrical and, thus, the PDF on half of the domain is equal to the
one for the whole. The total probability of inspecting a point at any location with uniformly random
sampling p.(x,t) = p(t) within the considered domain V' is P = [, p(t) dx = 1 by definition, thus
p = 1/V. However, in an unconfined domain with infinite size this probability is identically zero.
Therefore, for an unconfined domain, we must consider a portion of it x €] — N, N[ or x €]0, N]|,
with arbitrarily large, but finite, N so that outside this domain the concentration is too small to be
detected, ¢ < c;; where c;, represents the smallest concentration that is distinguishable from zero.
In general, the size N of such domain must be time dependent N = N(t), since the concentration is

spreading. For a profile invertible on the full domain we consider x €] — N, N[ and thus

N(t) 1
PI-N() <x <N(@®)] = [ p(tydx=p(H)2N(#H) =1, p= , 27
N@ <x<NOL= [ p0de=pW2N0 =1, p= 5o 7
if the profile is invertible only on half of the domain we have x €] — N,0[ and
' d
PI-N() <x <0l = [ pHdx=pt)N() =1, p= = 28
[N <x<0]= ] pHdx=pE)N(H) =N 2.8)

In the following we are going to solve the dimensionless diffusion equation (2.5) and compute dif-
ferent mixing measures and their scaling laws for an initial front/pulse for unconfined and confined

scenarios.
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2.2.1 Unconfined case

For an unconfined domain, x € (—o0,40), the partial differential equation (2.5) can be solved
considering the Fourier transform along the spatial variable x, reducing Eq. (2.5) to an ordinary
differential equation in the Fourier space, that can be solved and anti-transformed. The well-known

general solution of Eq. (2.5) is given by:

c(xt) = / " foly) e gy, (2.9)

Vit

where fo(x) = c(x,t = 0) is the initial concentration profile.

Initial concentration front

Assuming that the mass is initially distributed as a sharp front located at x = 1/2, we represent
the initial condition as fy(x) = 6(x —1/2) (shown as a black solid line in Fig. 2.1.a), invoking the

Heaviside step function 6. Thus, the solution of (2.9) for this initial condition is:

x—1/2
[1 + erf (\/Eﬂ , (2.10)

which is shown, at different times (t = 0.0045, 0.016, 0.12 and 0.43, from light to dark), in Fig. 2.1.a as

N —

c(x, t) =

pink solid lines. As time passes, the initially sharp concentration profile evolves towards a smoother

profile, spreading across the unconfined domain.

The spatial distribution of concentration c(x,t) can be mapped into its PDF p(c), as defined by
Eq. (2.6). We denote by N(t) the distance from x = 1/2 to the location where concentration attains
the smallest detectable value ¢, c(x = —N, t) = ¢, and, by symmetry, it is also the distance from
x = 1/2 where concentration is higher than 1 — ¢, c(x = N, t) = 1 — ¢;;. Thus, the normalization

of the PDF is p(t) = 1/(2N(t)) and

1
N(t) = —VAaterf '(2¢c,, —1), theref t) = — . 211
(t) erf " (2cy, — 1) erefore p(t) tierf Y20y — 1) (2.11)

Note that erf ' (2¢c,, — 1) is negative, ensuring that p is positive. Finally, using Eq. (2.11), inverting
and differentiating Eq. (2.10) we get:
VT

erf 1(2¢—1)2
PclC) = e . 2.12
C< ) 2erf 1(2Cm—1) ( )
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We observe that under unconfined conditions a diffusive solute of concentration ¢ has a PDF which
is independent of time. This is also shown in Fig. 2.2.a where p.(c) is plotted as solid pink lines,

with color ranging from light to dark with increasing time (all solutions collapse on a single curve).

a) b)

——Confined sol.
— Unconfined sol.

d)

(z,1)

!
c

g

T T

Figure 2.1: Profile of concentration c and its gradient V¢ predicted by the analytical solution of
one-dimensional diffusion equation in an unconfined, Eq. (2.9) (solid line), and confined, Eq. (2.31)
(dotted line), domain. a Concentration profile for a front concentration initial condition (black line),
in unconfined Eq. (2.10) and confined Eq. (2.31) domain, b concentration gradient normalized by its
maximum value at time ¢ = 0.0045 for the profiles in a: each line in both plots corresponds to the
normalized time ¢ = 0.0045, 0.016,0.12 and 0.43. ¢ Concentration profile for a pulse initial condition
in unconfined domain, Eq. (2.18), normalized by its maximum value at time t = 0.0047 and confined
domain, Eq. (2.31), d concentration gradient for the profiles in c: each line corresponds to a different
normalized time ¢t = 0.0047, 0.013, 0.023, 0.043 and 0.079.

The degree of mixing reached by the diffusing system at a given time can be measured in terms of

the system entropy or dilution index [64], defined as:

E(f) = exp (— / c(x,t) In[c(x, )] dx) . (2.13)

PhD thesis - Mayumi Hamada



2.2. RESULTS 21

Inserting Eq. (2.10) into the previous expression we obtain:

(o]

E(t) = exp(\/ﬂ[), where I = _/

—00

% [1+ erf(y)] In (;[1 + erf(y)]> dy, (2.14)

* _  The previous exact analytical expression is shown in
D1 P y P

having introduced the coordinate y =
Fig. 2.3.a in a double logarithmic plot versus time and in Fig. 2.3 b as a semi-logarithmic plot versus
V/t, as pink dots: from its initial value E(0) = 1 (note that at t = 0 the concentration has value either
0 or 1) it keeps increasing as eV for all times as result of the infinite space where the concentration

can mix (and dilute) indefinitely.

The spatial variability of the concentration solution, Eq. (2.10), is quantified by its gradient, i.e. its
spatial derivative, that is:

Ve = 417” o (x-1/272/4t (2.15)

The previous expression is shown in Fig. 2.1.b as a solid pink line ranging from light to dark as
time increases with the same steps of the associated concentration profile (t = 0.0045, 0.016, 0.12
and 0.43). As time passes the gradient maximum value g)s reached at x = 1/2 decreases as gy =
1/+/47t (as shown in Fig. 2.4 a in a semi-logarithmic plot and in Fig. 2.4.b in a double-logarithmic
plot), while it broadens as measured by the square root of its variance, that scales as v/2t. The rate
at which the considered diffusive system is mixing is, then, quantified by the scalar dissipation rate
as:

+o0
e(t) = / Vel Vedsx, (2.16)

which quantifies the spatial availability of concentration gradients that allows the Fickian mass flux
to take place. It is a measure of mixing because it is related to the time derivative of the square
of concentration [88] and therefore is related to a measure of the concentration fluctuations. In the
case where the considered system is finite, boundary terms appear: however, if no-flux boundary
conditions apply (Vc|s = 0), these boundary terms are identically zero and play no role at all times.

Defining the change of variable y = (x — 1/2)/+/4t, we obtain:

e(t) = —— /ﬂeryzd -1 (2.17)
VAt J-w 7= 8t .

as shown in Fig. 2.4 c and d, where it is displayed through a semi-logarithmic and double-logarithmic
plot, respectively. The scaling of the scalar dissipation rate reflects that of the average gradient that

can be approximated by the ratio of gy ~ ¢t~/ and its spreading rate t'/2, so that V¢ ~ t~1/4,
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Figure 2.2: Probability density function (PDF) p. and p, of concentration ¢ and gradient g. values,
shown in Fig. 2.1, for confined (solid line) and unconfined (dotted line) cases: each line corresponds
to the same rescaled times as in Fig. 2.1: color scale goes from light to dark as time increases. a and
b are concentration and gradient PDF for a front initial condition while ¢ and d are concentration
and gradient PDF for an initial pulse. Diamonds represent the approximated solutions derived for
the confined cases. The insets in a and ¢ are zoomed-in views of the PDF for the last time step.
Insets of b and d represent the temporal evolution of the plateau value B.

Initial concentration pulse

If we consider the paradigmatic case of a pulse initial condition, for which all the mass is initially
located at x = 1/2, as described by fo(x) = d(x — 1/2), the concentration profile is the well known

Gaussian function:

1 1
c(x,t) = ——— e VDV (x =1/2) = , (2.18)
47 4t

-

which is characterized by the decay of its maximum value cjs and its lateral spreading. In Fig. 2.1
c'(x,t) = c(x,t)/c(x,ty), where tg = 0.0047, it is shown at four times steps (+ = 0.0047, 0.0128, 0.0234,0.04.3

and 0.0788), as a pink solid line ranging from light to dark as time increases. We notice that the con-
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centration profile for a pulse initial condition Eq. (2.18) is exactly the gradient of the concentration
profile of a front: this is a consequence of the linearity of the diffusion equation and the fact that an
initial pulse corresponds to the gradient of an initial front. Below we show that it is not the case in

a confined domain.

The PDF of this profile can be derived from Eq. (2.6). The profile is invertible only on half of
the domain x €]0, N[ so p = 1/N, computing N as described above, inverting and differentiating

Eq. (2.18), we get:
1

" 2c VIn(en /em)In(c/cp)
which is shown in Fig. 2.2.c. Since the solution Eq. (2.18) shown in Fig.2.2 c is the same as the

pe(c) (2.19)

gradient of a diffusing front, the previous expression also represents the PDF of a front gradient
P¢(8c), shown in Fig. 2.2 b, that scales as 1/g. for small values and its maximum value gy decays

with time (due to mixing), as 172,

The dilution index for an unconfined diffusing pulse is computed combining Eq. (3.12) with Eq. (2.18),
to get
E(t) = exp[In(V4mt) +1/2] = V4rn t. (2.20)

The previous exact analytical expression is shown in Fig. 2.3 ¢ in a double logarithmic plot versus
time, as pink dots: from its initial value it keeps increasing at all times (slower than the initial
front) as result of the infinite space that the concentration can explore. The concentration gradient

is obtained differentiating (2.18):

1 —-1/2
Vel ) =~ gy Y, @21)

and it is shown in Fig. 2.1 d at four time steps (t = 0.0047, 0.013, 0.023, 0.043 and 0.079), as pink solid
lines ranging from light to dark as time increases. Its maximum value (equal to the opposite of its
minimum value) is reached at the moving location x = 1/2 + /2t and its absolute value decreases

with time as:

e
&M= \/87Tt'

which is shown in Fig. 2.5 a in a semilogarithmic plot and in Fig. 2.5.b in a double logarithmic

NI

(2.22)

plot. We cannot invert and differentiate Eq. (2.21) since the spatial variable x appears within the
exponential argument as well as in prefactor. Thus, we compute numerically the occurrence of the

values g. from the analytical expression Eq. (2.21), to derive the gradient distribution p¢(g.), as a
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normalized histogram: the result is shown as pink solid line in Fig. 2.2.d, ranging from lighter to
darker as time increases, for the same steps as the profiles of Fig. 2.1.c and d. As for the concen-
tration profile, the distribution of gradient values g, scales as 1/g. for small values and it increases

towards its maximum value Eq. (2.22).

The scalar dissipation rate defined in Eq. (2.16), measuring the rate of the diffusing pulse mixing, is:

1
e(t) = TR (2.23)

and it is shown as pink dots in Fig. 2.5 ¢ as semilogarithmic plot and d as double-logarithmic plot.

Classical measures of mixing for unconfined diffusive systems are power law of time: this implies
that for these mixing phenomena a rigorous timescale cannot be defined. However, it is common to
refer to t = 1 (in dimensional form to A?/D) as the characteristic diffusive timescale. We introduced
it as the timescale allowing one to make the diffusion equation dimensionless; it can also be invoked
from the second centered moment of a diffusing plume as the time needed for its spreading to cover

the length scale of 1.

2.2.2 Confined case

Let us now consider a system where a tracer is confined within impermeable boundaries, x € [0, 1]
with imposed no-flux boundary conditions. The diffusion problem is mathematically formulated

as:

dc 9% , ac
3% = 32 for x€0,1] with ¢(x,0) = fo(x) and —

o =0, (2.24)

=01

with ¢, t and x defined in Eq. (2.4). Using the method of separation of variables, we can express the
problem solution as:

c(x,t) = X(x) T(t), (2.25)
which can be differentiated with respect to time and space, providing:

o , ?c
P X(x) T'(t) and F X" T(t). (2.26)

We then rewrite Eq. (2.24) as:
X(x)T'(t) = X"(x) T(t). (2.27)

PhD thesis - Mayumi Hamada



2.2. RESULTS 25

a) ‘ b) 55
¢ Confined sol.
10! ||—Confined approx. sol.
Unconfined sol. [
1.9/
R ! R4
10°[0660 ' ; | 1&‘6‘9
104 1073 102 1071 10° 10! 0 0.4 0.8 1
t Vit
c)
10t}
S 10() L U i
& X
% :
®
®
®
10 69
Q
1074 1073 1072 107! 100 10

t

Figure 2.3: Temporal evolution of the dilution index E(t), Eq. (3.12). a and b show the front initial

condition: in b the semi-logarithmic representation of E versus v/t emphasizes the scaling eVt for
early times. ¢ pulse initial condition. For all initial condition, the unconfined case (pink dots) grows
indefinitely, while the confined case (diamonds) reaches its maximum value (complete mixing)
earlier than + = 1/7? (vertical dashed black line). The solid line represents the approximated
analytical solution computed.

Collecting time on the left-hand side and space on the right-hand side of the equation, we obtain:

() X'(x)

0 = X - ™ (2.28)

where « is a positive constant that ensures mass conservation. We have now a system of two

ordinary differential equations to be solved simultaneously:
X"(x) +aX(x) =0, (2.29)

and

T'(t) + a T(t) = 0. (2.30)
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Solving Eq.(2.29) for X(x), we find the family of solutions X,,(x) = A, cos(v/ax): applying the
boundary condition X’(0) = X’(1) = 0 the only non-trivial solution is given by a = m? 2. Thus,
Eq. (2.30) becomes T'(t) = —m®>m? T(t): integrating on both sides we get T,,(t) = P, e M 4 C,

The general solution is a linear combination of the obtained sets of solutions:

c(x,t) = Y By cos(rmmx) At ct, (2.31)
m=1
with cr the homogeneous concentration reached at t = +co and B, a coefficient that depends on

the spatial initial distribution fy(x) = ¢(x,0):
1

B, =2 / fo(x) cos(rmx)dx. (2.32)
0

The derived solution Eq. (2.31) expresses the concentration profile as the superposition of modes m
(functions that do not change shape as the system diffuses) that are periodic and fluctuating in space
between the domain boundaries, while temporally decaying exponentially fast with characteristic

scaling exp(—m?7? t).

Initial concentration front

For an initial front fy(x) = 6(x — 1/2), the profile in Eq. (2.31) is shown in Fig. 2.1 (as a pink dotted
line ranging from light to dark as time increases) at the same time steps, shown for the unconfined
case. At early times the confined and unconfined profiles exactly overlap, while at later times they
do not. On the one hand, the confined solution, due to the no-flux boundary conditions imposed,
keeps a flat profile at the boundaries (x = 0,1) and, thus, a steep gradient providing a strong dif-
fusive mass flux responsible for mixing. On the other hand, the unconfined solution spreads across
space smoothing its gradient, reducing dramatically the Fickian mass flux and, thus, the overall

mixing.

For times larger than t > 1/(m?n?) the exponential time dependence of the mode m cannot be
neglected. Since for the mode m = 1 the coefficient By = 2/ is non-zero, it dominates the solution,
Eq. (2.31), for times larger than 1/7%. For such times, the concentration profile is well approximated
by:

c(x,t) = cf—2/m cos(mx) et (2.33)

with the value of ¢ that is bounded between its minimum and maximum values ¢, < ¢ < c), that
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Figure 2.4: Temporal evolution of the maximum gradient g)s and scalar dissipation rate € for a front
initial condition. The semi-logarithmic plot in a2 and ¢ emphasizes the exponential cut-off due to
confinement that takes place around t = 1/7?; the double logarithmic plot in b and d emphasizes

the power law decay for early times, taking place when the confinement has no impact on diffusive
mass transfer.

are taken at the impermeable walls x = 0,1 where they vary to conserve the total mass, as:
em=c(x=0,t) =cf— 2/me ™, oy = c(x =1,t) =cf +2/me T, (2.34)

At early times, t < 1/ 712, several terms of the expansion, Eq. (2.31), must be taken into account and
we cannot invert and differentiate it to compute its PDF, p.(c). However, at such short times the
solution for ¢(x, t) is not affected by the presence of the impermeable boundaries at x =0 and x =1
and it is well approximated by (2.10) and thus also p.(c) is known and given by Eq. (2.12). For
t > 1/7 we can invert and differentiate Eq. (2.33) to derive the probability density function. The
profile is invertibe on the full domain x €]0,2 N|, in the confined case N =1/2sop =1/(2N) =1,
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and we get:
exp(r%t)

\/1 — [(cf — )5 exp(m? t)]zl

which is shown in Fig. 2.2a as a pink dotted line from light to dark, for increasing time. As time

(2.35)

1
pC(C/t) ~ E

overcomes 1/7t> the concentration PDF becomes time dependent and it deviates from the uncon-
fined case: for low concentrations it deviates from the scaling ~ 1/c towards a U-shaped function,
characterized by peaks at the smallest and largest value, Eq. (2.34), and it is exactly described by
Eq. (2.35), as shown in Fig. 2.2 a (diamonds).

We were not able to derive an analytical expression for the dilution index for this case and, thus,
it has been computed numerically inserting Eq. (2.31) within the definition of E Eq. (3.12). This is
shown in Fig. 2.3 a where the confined case from its initial value E(f = 0) = 1 rises up to its final

plateau for times larger than t > 1/7? corresponding to:
E(t) = exp [— /cf In(cy) dx] = exp[—1/2In(1/2)] = V2, (2.36)

implying that the macroscopic mixing state of the diffusing system stops evolving, while the uncon-
fined case grows indefinitely. Moreover, the semilogarithmic plot of E versus v/t shown in Fig. 2.3.b
highlights the higher degree of mixing of the confined case for times even shorter than /0.1 corre-

sponding to times shorter than 0.01.

For large times, t > 1/7%, we compute the gradient of Eq. (2.33):
Ve~ 2sin(mx)e ™ (2.37)
The above expression for Vc, whose value we denote by g., can be inverted and differentiated to

compute its probability density function as:

1 exp(7t2 t)

= , (2.38)
2n \/1 — [3 gcexp(m2 t)]2

ps(8c) =

shown in Fig. 2.2 b (diamonds). We remark that for a front initial condition the concentration is
dissipated very quickly and the values c,, and cys approach exponentially fast the asymptotic value

c¢, flattening the spatial profile: this is reflected on the concentration PDF p.(c) that deviates from

exp(47® t)

i, as shown

the unconfined 1/c¢ to become flat at low ¢ values where it gets the value g ~

in Fig. 2.2.b and its inset. The concentration gradient reaches its maximum value, g1, at location
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Figure 2.5: Temporal evolution of the maximum gradient gy and scalar dissipation rate € for a pulse
initial condition in unconfined (dots) and confined (diamonds) cases. The semi-logarithmic plot in
a and ¢ emphasizes the exponential cut-off (dashed black line) due to confinement that takes place
around t = 1/7%; the double logarithmic plot in b and d emphasizes the power law decay for early
times, taking place when the confinement has no impact on diffusive mass transfer.

x=1/2:
g =Ve(x=1/2,t) =271, (2.39)

and decays much faster (exponentially fast) than the power law decrease of the unconfined case, as
shown in Fig. 2.4.a and b. This change in temporal decay is due to the fact that to conserve mass
the concentration value at the boundaries vary exponentially fast (see Eq. (2.34)) as the tracer gets

accumulated there due to the spatial confinement.

From the spatial profile of the concentration gradient Eq. (2.37), we compute the analytical expres-

sion of the scalar dissipation rate for t > 1/ 7% as:

e(t) =~ 2e 27 (2.40)
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whose exponential decay, shown in Fig. (2.4) c and d superposed to the slower power-law decay

1/+/87t of the unconfined case, has the characteristic time 1/ (27?).

Initial pulse

We now consider an initial pulse fy(x) = §(x — 1/2). Since B; = 0, for times larger than 1/ (47?),

the leading mode of Eq. (2.31) is m = 2 (and B, = —2) so that:
c(x, ) & cf — 2cos(2x) exp(—47°t), (2.41)

with the concentration value bounded between its minimum and maximum values ¢, and cy,

respectively, which are:
cm =c(0,t) = cf — 20740 oy = c(1/2,t) = c¢ +2e47, (2.42)

We observe that, unlike in the unconfined case, the concentration profile for the pulse initial condi-
tion differs from the gradient of a diffusing front. The former decays exponentially with a charac-
teristic time which is four times shorter: 1/ (47t?) instead of 1/7t%. Moreover, the two spatial profiles
are different since the front gradient is zero at the boundaries (x = 0 and x = 1) to ensure no flux
at impermeable walls, while the pulse solution, to conserve the mass, is always above zero and it

increases at both boundaries with time.

For early times t < 1/(47?) several terms of the sum in (2.31) must be taken into account and we
cannot invert it to compute p.(c). However, at such short times the solution for c is not affected
by the presence of the impermeable boundaries at x = 0 and x = 1 and it is well approximated by
(2.18) and thus also p.(c) is known. At large times, we invert and differentiate the concentration
spatial profile Eq. (2.41) on half of the domain, x €]0, N[ so p = 1/N = 2, to derive the probability

density function p(c) as:
exp(47*t)

pele,t) ~ — (2.43)
27 \/1 B ((c—cf) exp (47 t))

2

shown in Fig. 2.2.c (diamonds). We remark that for a pulse initial condition the concentration is
dissipated very quickly and the values c,, and cys approach exponentially fast the asymptotic value
c¢, flattening the spatial profile: this is reflected on the concentration PDF p.(c, t) that deviates from

the scaling 1/c¢ towards a U shape.
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As for the front case, we were not able to derive an analytical expression for the dilution index in a
confined domain, thus, it has been computed numerically inserting Eq. (2.31) within the definition
of E Eq. (3.12). This is shown in Fig. 2.3.c where the confined case deviates from the unconfined
one at times even shorter than 1/(27?) to reach its final plateau. This shorter mixing time can be

understood analyzing the scalar dissipation rate, discussed below.

We compute the corresponding concentration gradient considering only the dominant term m = 2,
and we have:

Ve(x, t) ~4msin(2mx)e 470 (2.44)

The above expression for the concentration gradient, whose value is denoted by g, can be inverted
and differentiated to compute its probability density function as:
exp (4% t)
ps(8c) = E =
872 \/1 — [ gcexp(4m?t)]

(2.45)

where its minimum and maximum values are reached at the steady locations x = 1/4 and x = 3/4,

respectively:
gm=Vec(x=1/4,t) =4n et and em = Ve(x =3/4,t) = —4n g4t (2.46)

Note that for the unconfined case the locations where Vc = g, ¢ are moving as v/ away from
xo. As for the concentration, also the gradient profile flattens at large times and its PDF pg(g.)

deviates from the unconfined 1/c scaling to become constant at low ¢ values where it gets the value

. exp(4m?t)
P~ 8m2

, as shown in Fig. 2.2.d and its inset. From the spatial profile Eq. (2.44), we compute
the scalar dissipation rate as:

e(t) ~8m2e 87, (2.47)

which is shown in Figs. 2.5 c and d in a semi-logarithmic and double logarithmic plots, respectively,
to highlight its exponential decay which is much faster than the power law scaling of the unconfined
case. We note that the exponential decay characteristic time is 1/(87%) and it is shorter than the
1/(27%) characteristic of mixing for the front case, as observed also in the dilution index analysis,

discussed above.
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Numerical solutions as control

We tested all our analytical derivations against numerical solutions of the diffusion equation in a
confined domain. We adopted a backward finite difference simulation scheme for the diffusion
equation in a one-dimensional and confined domain, with no-flow boundary condition. The initial
conditions we impose to the front and pulse initial conditions are defined as Egs. (2.10) and (2.18)
for t = tg = 1078, respectively, which corresponds to the two theoretical initial configurations
that underwent a little diffusion. The numerical results show that our derived solutions accurately
describe the physical problem (the mean-squared error between the two profiles is below 1078 cg
at all times). All expressions we derived for concentration profiles and mixing measures are in

excellent agreement with the numerical simulations.

2.3 Impact

We showed that diffusion in a confined domain is qualitatively and quantitatively different from dif-
fusion in an unconfined and continuous domain. To illustrate the potential impact of the discussed
results on mixing within confined media, we simulate, as a proof of concept, the displacement of a
mixing front in a porous material. We run a numerical simulation for Stokes flow ina 1 mm x 3 mm
porous medium with a prescribed geometry, no-slip boundary conditions at grains walls (gray disks
in Fig. 2.6), characterized by an average pore throat size of I = 0.05 mm, resulting in an average
fluid velocity of 1 mm/s (Reynolds number Re = [ u/v = 0.05). In this flow we solve the transport
of a passive solute Eq. (2.1) continuously injected from the left-hand side of the system, with no-flux
boundary conditions at the grain walls. A snapshot of the concentration field transported within
a porous medium for a Péclet number Pe = 1p /74 = ul/D = 2500 (a measure of the relative im-
portance of advective and diffusive mechanisms) is given in Fig. 2.6a after 40 advective time steps
(t =40t 4). For the Pe = 2500, this corresponds to ~ 1.5% of the diffusive time, which would imply
a very sharp front where diffusion has not had the time to play a role at the scale of a pore. Instead,
the figure shows that diffusion had the time to smear the pore-scale concentration gradients within
the pores. This would be consistent with the much smaller Pe = t./t4 = 250, defined with respect
to the confinement-limited diffusion time scale t., defined in terms of the scalar dissipation rate, for

which 40 advective time scales correspond to ~ 15% of it.

The concentration field is heterogeneously distributed across the pores and along the fluid displace-

ment front, which is stretched and elongated resulting in a lamellar structure. In Fig. 2.6.b we show
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a zoom-in view of mixing at a single pore throat, to highlight the pore scale non-mixed condition,
which is quantified in Fig.2.6.c where the interpolation of the concentration field across the pore
throat is shown in red. We observe that the concentration profile confined in a pore is qualita-
tively different from its unconfined counterpart (blue line); indeed the presence of an impermeable
boundary i) prevents the solute from diffusing freely, ii) enhances the diffusive flux decreasing the
scalar dissipation rate, iii) resulting in a rise of the small concentration values (left-hand side of the
red line in Fig. 2.6.c). This example qualitatively illustrates the potential impact of the impermeable
boundary conditions on mixing state and rate in confined environments. To properly capture the
mixing dynamics taking place in these porous systems, the derived confined solution for diffusion
must be incorporated with the stretching dynamics in a lamellar framework, where the distribution
of the confinement length scale I and the stretching of the front associated to the host medium
heterogeneity are coupled in a non trivial way. A detailed study of mixing in such a complex and
confined flow system goes beyond the research presented in this article, but must incorporate the

results presented here for diffusion alone.

a)

Figure 2.6: a Concentration field in a porous medium composed of round grains (gray disks) for Pe
= 2500 after rescaled time t/74 = 40. b Zoom-in of the same concentration field in a pore. ¢ The
blue line shows a diffusive unconfined concentration profile; the red line represents the interpolated
concentration profile along the blue segment in b).

2.4 Conclusions

Diffusion is the key mixing mechanism in fluid systems, since it ultimately homogenizes concen-
trations, also in the presence of stretching and compression by velocity heterogeneity. We present
analytical results of the one-dimensional diffusion equation in a confined domain, characterized by
the presence of no flux boundaries, separated by a distance A, that prevent the solute concentration
from diffusing freely and explore wider areas of space. We show how diffusion is affected by the

confined nature of the considered spatial domain and we quantify its impact on mixing.
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The general solution of the diffusion equation in a confined domain, Eq. (2.31), expresses the con-
centration profile of a diffusive tracer as the superposition modes m (functions that do not change
shape as the system diffuses) that are periodic and fluctuating in space between the domain bound-
aries, and temporally decaying exponentially fast, scaling as exp(—m?7?t). As far as the diffusing
tracer does not experience the presence of the impermeable boundaries (e.g. right after the injection
of a pulse in the middle of the domain t < 1/(m? 72)) the exponential decay of the modes is not
substantially changing their amplitude and a large number of modes must be taken into account
to describe the tracer concentration profile, recovering the solution of the unconfined case. In such
conditions space and time are coupled and the concentration profile can be expressed in terms of
the classical dimensionless coordinate for diffusion, ¢ = x/+/2Dt, making the profile self-similar
and scale independent, which is reflected in the slow, power law decay of several mixing measures.
However, as soon as a single mode m dominates the sum, space and time are decoupled and the
exponential decay of the solution defines a characteristic time scale (1/(m?7?)), as reflected by the

exponential decay of the mixing measures considered.

Physically, in a confined space the no-flux boundary condition V¢(0,t) = Vc(A,t) = 0 imposes a flat
profile at the domain edges leading to an overall steeper gradient and higher mass flux compared to
the unconfined case where mass can freely diffuse exploring wide areas of space, slowly dissipating
the concentration gradients. Therefore local and global measures of mixing display significantly dif-
ferent dynamics. We show that, maximum concentration gradients and scalar dissipation rate drop
exponentially fast and the dilution index E reaches a plateau, while they typically follow a slower
power law decrease in an unconfined domain and E grows indefinitely. Also the concentration and
gradient distribution (PDF) significantly change their shape and dynamics. This exponential time
scaling of mixing measures in confined conditions leads to the definition of a new characteristic
time scale for diffusion, which depends on the initial condition and it is fixed by the leading mode
(e.g. m = 1 for a front and m = 2 for a pulse), A?/(m? D %), which is much shorter (one order of

magnitude shorter) than the characteristic A2/ D defined to re-scale the diffusion equation.

These observations show that the homogenization dynamics (mixing) is significantly faster under
confinement, i.e. no-flux boundary conditions. In more complex scenarios, where the host medium
heterogeneity must be taken into account, diffusion must be coupled with flow and fluid stretching
variability [84, 22] as well as confinement scale A that can change considerably [21]. For exam-

ple, in a lamellar framework [72, 22], the local confinement scale A should be normalized by the
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lamella width s(t) and time is rescaled by the characteristic diffusive time over a lamella width
t=D fot 1/s(t')?dt, since fluid stretching affects the local diffusion process by keeping the gradi-

ents steep. In such scenario, the boundary conditions become time dependent and given by:

dc

— =0. 2.4
o |a=0,1/s(F) 0 248)

Furthermore, in a heterogeneous medium A must be defined locally, leading to a space-dependent
characteristic time scale. Implementing a full mixing model taking into account no-flux boundary
conditions at domain boundaries is non-trivial and requires further work. However, neglecting
confinement-limited diffusion to describe mass transport phenomena may lead to an incorrect de-

scription of mixing.
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Chapter 3

Novel method to measure diffusion

coefficient of tracers

3.1 Introduction

Molecular diffusion of substances in liquids is a key process in numerous natural and engineering
systems. It is often the reaction rate limiting factor in biological or chemical reaction. Generally,
it is the ultimate mechanism by which concentration get homogenized and, thus, mixing and di-
lution occur. Since the beginning of the 20" century chemists and biologists were interested in
developing laboratory methods to accurately assess this process. Molecular diffusion of a given dis-
solved or suspended compound originates from the individual molecules (or particles) motion that
is associated to their thermal agitation: a famous example is the early observation of pollen grains
movement in water by Brown [46]: the macroscopic consequence of this microscopic phenomenon

is that the mass of that compound spreads in space as time passes.

The description of this macroscopic spreading is given by Fick’s first law: it states, in analogy with
Fourier’s law of thermal conductivity, that the diffusive mass flux J(x) at a location x is proportional

to the concentration gradient, it gives in one dimension and for a proportionality constant D:

Jc
J(x) = —D5- (3.1)

where the constant of proportionality D is the so-called diffusion coefficient. The negative sign
implies that mass moves from locations with higher concentration towards areas of lower concen-
trations. Since their gradient changes with time as the substance diffuses, mass conservation must

be considered to described the concentration spatio-temporal dynamics:

37
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Jc 0

—=—=7J(x), 3.2
5 = 32/ (3.2)
which states that for a given location x a change in the mass flux is associated to a change of
concentration in time. Combining the two Fick’s laws we obtain the well-known diffusion equation

describing the spatio-temporal distribution of a diffusing substance:

dc 92

FT -D 2 c(x). (3.3)
Knowing the value of D is crucial to describe the fate of a diffusing substance and all the diffusion-
related phenomena, like mixing or reactions. For spherical object of radius r the value of the
diffusion coefficient can be theoretically derived from the well-known Stokes-Einstein relation [53]
which couples the kinetic energy associated to the thermal agitation of particles and the viscous

drag the particle experiences while moving within a fluid of viscosity u leading to:

D— kT,
6mTur

(3.4)

with k the Boltzmann constant in [J/K], T the temperature in [K], # the dynamic viscosity in [Pas]

and r the particle radius in [m].

For objects of approximately spherical shape (e.g. many type of molecules, colloids or bacteria) for
which the radius is known, several methods have been developed in the past decades to measure
the value of D based either on the microscopic (individual motion) or macroscopic (concentration
distribution) properties of the process. Dynamic Light Scattering (DLS) measures intensity fluctua-
tion of light scattered by particles and relates it to the particle velocity. It is a technique in physics
that is typically used to determine the size distribution of small particles in suspension; it is based
on the Mie theory that describes the scattering of light by a homogeneous set of spherical objects
of same (or similar) size. Knowing the size of the diffusing objects composing the substance under

investigation, based on Eq. (3.4) the diffusion coefficient can be calculated [92].

Other methods to measure D in liquids are based on macroscopic mass transfer. For instance the
one based on Taylor dispersion within a Poiseuille flow, where a pulse of a substance is injected
within a tube stream and the concentration measured at the outlet. The obtained profile is then
fitted to the solution of dispersion equation where the proportionality constant D; is Taylor diffu-

sivity. The value of the diffusion coefficient D can be then back computed knowing the tube radius
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r and mean flow velocity u through Dy = r?u?/(48 D) [93, 94].

Another method exploits the diaphragm cell [95, 96, 97]: two reservoirs of volume V are separated
by a porous membrane and a solute diffuses from one to the other through the membrane, the
concentration is measured in one reservoir at time interval dt and thus the rate of change of solute
concentration dc/dt = (ca —¢1)/(t2 — t1) in the reservoir is given by Fick’s law and depends on the
membrane width I and effective porosity A as Vdc/dt = —D A (¢ — ¢r2) /1 from which the value of
D is determined. A calibration with a solute of known diffusion coefficient is required to determine

A.

All these widely used methods are either based on indirect measurements (DSL and Taylor disper-
sion) or require previous knowledge on both solute and solvent (for the diaphragm cell knowledge
on the solute, its approximate molecule size are necessary to choose the proper membrane). We pro-
pose, here, a method to measures the diffusion coefficient D, the proportionality constant appearing
in the Eq. (3.3), that requires no beforehand knowledge on neither the target substance nor on its
solvent. It also do not depends on the initial condition of the concentration profile, it only requires
two profiles and the time separating them. The method has an uncertainty of 3 % on the measured
value of the diffusion coefficient. To the best of our knowledge, and considering the properties

described above, the method is new.

3.2 Method

Let’s consider a tracer of concentration ¢ dissolved, or suspended, in a given liquid. The main idea
behind our method is to measure the spatio-temporal evolution of the concentration profile c(x, t)
with optical techniques, under initial and boundary conditions for which an analytical solution of
the diffusion equation Eq. (3.3), depending only on D, is known. By fitting this analytical solution
c(x,t) to the measured concentration profile will provide an estimate of the diffusion coefficient
D. To validate our experimental set-up we use a tracer for which the diffusion coefficient can be
predicted by the Stokes-Einstein relation [53]: we choose fluorescent polyethylene micro spheres
whose density can be matched by the liquid medium. We will, then, apply the same methodology
to a colored tracer whose molecule is non spherical. In separate experiments, both tracers are

optically visualized and we relate the signal detected by a camera to their local concentration value.
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3.2.1 Fluorescent particles tracer

We use polystyrene fluorescent micro-spheres (Fluoro-Max, Thermo Fisher B150) of radius r =
0.075 um that are provided at 1 % solid concentration, from which we prepare a 20 times diluted
in a milliQ water and heavy water mixture of density 1.05 g/ml, matching the one of the micro-
spheres to avoid their sedimentation. When fluorescent molecules are excited by incoming light at
given wavelength, their electronic cloud get excited for a very short time scale and, then, it relaxes
to its ground state by emitting photons at a larger (and less energetic) wavelength. The emission
signal is distinguished from the excitation one by the use of a filter and it is detected by a camera.
The amount of light recorded is proportional to the one emitted by the tracer and, thus, to its con-
centration. Excitation and emission light are selected using a filter-cube (Nikon, DAPI, excitation

bandpass 395 & 10 nm and emission bandpass 475 &= 11 nm).

The light detected by the camera is recorded into a gray-scale image and stored as a matrix im of
integer values between 0 (black) and 2bit _ 1 (white), where bit represents the color-depth of the
camera. We used a Nikon DS-Qi2 which is equipped with a CMOS full-frame sensor recording at
12-bit. If the tracer is not so concentrated to block part of the incoming and its own emitted light,
the value of this matrix im is proportional to the tracer concentration as im = sc + img, where s is a
proportionality constant and im represents the background noise, or the signal detected in absence
of tracer. Thus,

c= % (im — imy), (3.5)

where the value of s can be found via a calibration procedure collecting pictures of samples of
known concentration. We verified via a calibration that the tracer at the adopted concentration
satisfies the Eq. (3.5): however, to avoid propagation of error associated to the estimation of the
parameter s, we express the concentration c relative to its initial value c:
c im—im
— =3 (3.6)
Co 1myq — 1My
where im; is the matrix representing the image collected when only the tracer at concentration ¢y is

present, so that c/cy does not depends on the estimation of the parameter s.

3.2.2 Colored tracer

The second tracer we use is a solution of methyl blue dye (Sigma Aldrich) of concentration ¢y =

0.15 mg/1. The solution is prepared with a mixture of milliQ water (80%) and glycerol (20%) whose
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viscosity is u = 0.0019 Pa s. Once a sample of this solution is irradiated with light, only a portion
of the signal passes through it while portion of it is absorbed: the more concentrated is the tracer,
the more light is absorbed and the less of it is transmitted. The light absorbance, the logarithm of
the ratio between incoming and transmitted light, is a linear function of the tracer concentration
according to the Beer-Lambert law [98]. The exponential dependence of the transmitted light to the
concentration can be simplified as linear for low concentrations, so that:

where im = im(c) is the transmitted light intensity through the tracer at concentration ¢ (and de-
tected by the camera), imy = im(c = 0) and imy = im(c = cp). To increase the light contrast between
the light passing through the tracer and the light passing through the water-glycerol solution, we fil-
ter the irradiating light with a customized filter (Semrock single-band band pass filter 662 £ 11 nm),

so that only near-blue light reaches the sample.

b. c.
L=40 mm

W=1mm
—

PDMS
é I channel —— [n=0.08 mm

glass slide ——

Figure 3.1: Set-up for diffusion experiment where we optically measure the diffusion profile of a
solute tracer in a microfluidic channel. a. Reservoirs for tracer and blank solution, one reservoir is
placed on a laboratory jack to adjust water level and ensure equal head between the two; b. Side
view: cross-section of a microfluidic chip male of a PMS channel sealed to a microscopy glass slide,
the channel dimensions are height 1 = 0.08 mm, width w = 1 mm; top view of the channel: length
L = 40 mm, the gray rectangle indicates the position of image acquisition, in the y direction fluids
have a velocity u,, in the x direction u; = 0 and molecules are displaced by diffusion only, close
to the inlet the front between the tracer and blank is sharp while further downstream it is more
diffused; c. Syringe pump in withdraw mode creates a flow Q in the channel, the flow direction in
the system is indicated by the black arrow. Reservoirs, channel and syringe are connected using
Tygon tubes.
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3.2.3 Flow cell

In order to reproduce the conditions for which a tracer is diffusing along one dimension and com-
pare its concentration profile to the solution of Eq. (3.3), we build a microfluidics device where
we continuously inject, side by side, the mentioned tracer solution/suspension together with its
solvent (in the following called blank solution). Thus, we design a channel mold with rectangu-
lar cross-section and a parallel injection entrance for the two solutions (Fig. 3.1). In this flow cell,
the solutions flow happens along the channel main direction only: thus, the only mass transfer
mechanisms in the transverse direction is molecular diffusion. The cell geometry is printed onto
transparent glass at high resolution in chrome (JD Photodata, UK). Micro-channels are fabricated
using standard techniques of soft lithography and PDMS molding, they are then plasma-bonded
it to a Imm thick soda-lime glass slide. The resulting channel has width w = 1 mm, thickness

= 0.08 mm, thus a cross section A = 0.08 mm?, and a length L = 40 mm (see Fig. 3.1).

Each inlet is connected with Tygon tubing (internal diameter of 0.5 mm) to a reservoir (15 ml Falcon
tubes), one containing 4 ml of the blank solution, the other 4 ml of tracer solution. The outlet is
connected to a waste reservoir containing 4 ml of water. Tubing connecting the microfluidic chip
to the reservoirs can be open/closed at will by means of 2-ways microfluidic valves (MaxWire from
Elveflow), all three reservoirs are pressurized using a pressure controller (OB1 MK3+ from Elveflow)
so that the flow is established by a pressure drop between inlet and outlet of Ap = 50 mbar. Once
the flow is interrupted (by closing simultaneously all valves and stopping the pressure drop) the
tracer diffuses transversely towards the blank solution (and viceversa the black solution diffuses
towards the tracer): in this configuration the one-dimensional tracer concentration profile along
the channel transverse direction is solution of eq. (3.3). The tracer diffusion coefficient D is, then
obtained, by fitting the solution of eq. (3.3) to the measured concentration profile, using D as the

only fitting parameter.

3.2.4 Optical system and image processing

The microfluidic device is placed under a microscope (an inverted Nikon Eclipse Ti-E2) equipped
with a low numerical aperture (NA = 0.3) objective in order to observe in focus the whole depth
of the channel. Gray-scale images are captured and stored using a Nikon DS-Qi2 camera. Each
image is composed by 4908 x 3264 pixels whose physical size in the camera sensor is 7.3 ym: thus,
considering the objective magnification used (objective 10X plus the internal microscope 1.5X extra

magnification, for a total of 15X), an overall size of 2.3 X 1.6 mm. The images acquired are matrices
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1 mm

Figure 3.2: Microscopy images of the channel with 15x magnification optic, images are rescaled by
pixel depth. Fluids are flowing in the y-direction and tracer diffuses in x-direction. For fluorescent
particle tracer: a. Initial image, im0O(c =0) and im1(c = 1) are light intensity values in the red rectan-
gles, b. Experiment image im, the profiles are obtained by summing pixel values of the red rectangle
in the y-direction, c. Light intensity profile of initial image (dashed line), im (solid line), resulting
concentration profile according to Beer-Lambert law (dots) ¢ = (im - im0) / (im1 - im0). Equivalent
information for the methyl blue dye is given in d., e. and f., the resulting concentration profile is
given by ¢ = (im0 - im) /(im0 - im1).

of pixels whose value ranges from 0 to 2!2 — 1. Then, we crop each image to a desired region of
interest (red rectangle in Fig. 3.2 a and b) which goes from wall to wall of the microfluidic and
spans 300 pixels longitudinally (along the flow direction, y). Profiles (Fig. 3.2 c) are then obtained

by averaging values along y-direction, within the region of interest.

3.2.5 Theoretical estimate of D

The polystyrene particles diffusion coefficient D can be theoretically estimated with the Stokes-
Einstein relation [53] which applies to spherical objects Eq. (3.4). Working at T = 293 K with
a suspension of viscosity ¢ = 1.061073 Pa s and particles of size r = 7.5107% m, the diffusion
coefficient is estimated as D, = 2.7107% mm?/s. Even though methyl blue molecules present a non-

spherical structure, closer to a sheet (much thinner than wide), we can define an effective radius 7 =
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6.510719 m [99, 100, 101], the dynamic viscosity of the water-glycerol mixture is y,,;, = 1.98 Pa s and,
thus, we estimate D,, = 1.710~% mm?2/s. For each tracer, the characteristic time of diffusion 7p =
L?/D over the channel width L = 1 mm represents the upper limit for the concentration gradient
smoothing and its decay of mass flux, homogenizing its profile. Thus, the measurement must be
performed over a much shorter time scale. For the beads 1p = 1/2.7 1076 3.710° s ~ 100 hours;
for the methyl blue 7p = 1/1.7107* ~ 5900 s ~ 1.6 hours. For a confined condition it has been
shown and discussed in chapter two that the characteristic time for the exponential gradient decay

is Tp/ 2, thus about 10 hours for the beads and about 10 minutes for the methyl blue tracer.

3.2.6 Solution of diffusion equation

Since the fluid flow is stopped by closing the valves, the tracer is diffusing within the space of
length L between the microfluidics solid and impermeable boundaries, i.e the PDMS walls: thus,
the concentration profile that we measure is solution of the diffusion equation (Eq. (3.3)), with

no-flux boundary conditions, as derived in [102]:

c(x,t) =) By cos(mmx/L) e DLy o (3.8)

m=1
where c; = 1/(2L) is the homogeneous concentration reached at times larger than the characteristic
diffusive time scale over the channel width tp = L2/D and B,, a coefficient that depends on the

initial concentration distribution fo(x):

1
B, =2 /0 fo(x) cos(rmx)dx. (3.9)

Note that the initial condition fy(x) corresponds to any concentration profile collected at given time
top for which it will be imposed that ty = 0. Thus, the initial profile can be chosen at convenience.
Exploiting the matlab function Isqcurvefit, we fit for each time step ¢; the analytical solution c(x;, t;),
Eq. (3.8), to the measured concentration profile that we label cj1(x;, t;) by varying the only parameter

D until it is reached the minimum of the mean-squared error

z

1 1=

MSE = —
N !

(c(xit)) — em(xit))?, (3.10)

[ey

where N is the number of points over which the concentration profile is detected (number of pixels
along the transverse direction within the region of interest). We estimate the measurement uncer-

tainty on the value of D as the ratio between the standard deviation ¢ and the mean D defined
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as:

n

j j .,
(D; - D), (3.11)

i .
Dj,' 0 =
j=0 j

where 71 is the number of time steps (or samples collected), D; the fitted value of D at time t = ¢;.

D=

S|
|-
I
MA

3.2.7 Dilution index

Once the value of diffusion coefficient D has been correctly estimated one can predict the concen-
tration profile c(x, t) at any time and for any initial condition f, using Eq. 3.8. The degree of mixing

reached by the diffusive system can be described in term of system entropy or dilution index [64]:

E(t) = exp (/c(x,t) log(c(x,t)) dx> . (3.12)

The index increases as the system homogenizes.

3.3 Results

3.3.1 Polystyrene fluorescent particles

We record images of a diffusive front of polystyrene particles over seven hours at a rate of one image
per hour, the measured concentration profiles are shows as dots in Fig. 3.3.a, as time increases, the
profiles go from light to dark color. The fit of these profiles is superposed as solid lines while the
initial condition fy(x) is shown as black dashed line. For this data set the MSE between fitted and

measured profiles is on average, over all times, 2.3 104,

We compute the temporal evolution of the Dilution Index, a diagnostic quantity for the system
mixing degree, as defined in Eq. (3.12). In Fig. 3.3.c. is shown the temporal evolution of E(t) for
the measured (diamonds) and fitted (solid line) profile. Note that the system entropy increases as
the particles diffuses, and it will eventually reach a plateau when the system is completely homo-
geneous. In Fig. 3.3.b (diamonds) are shown the fitted values of D for each profile and the average
value is D = 2.610~®mm?/s (Fig. 3.3.b black dotted line). The standard deviation among fitted val-
ues, given by Eq. (3.11), is ¢ = 8.52 10~8mm? /s which indicate a deviation around the mean of 3.3 %.
The average value of the measured molecular diffusion coefficient is consistent, within 3 % with the
theoretical estimation by the Stokes-Einstein relation, showing that the novel method proposed is

accurate.
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Figure 3.3: a. Laboratory measurement of the diffusive concentration profile of polystyrene particles
suspension (dots) for six time steps (t = 7.51072 to 2.6 10~ 1p), fitted solution of Eq. (3.8) (solid lines)
with initial profile fo(x) (black dotted line); b. Value of fitted diffusion coefficient for each time
step (diamonds), mean value D (dotted line), theoretical prediction by the Einstein-Stokes relation,
Eq. (3.4) (solid black line), standard deviation ¢ (pink shade area); c. Dilution index value E

3.3.2 Methylene blue dye

Images of a methyl blue diffusive front are recorded over 11 minutes at a rate of one image every
50 s, the resulting concentration profiles are given in Fig. 3.4.a, as time increases the profiles are
shown from light to dark color. We use the first profile (black dots in Fig. 3.3.a) as initial condition
fo(x) for the fit of Eq. (3.8). The MSE is minimized by the fit to 8.7 10> and we obtain ten values
of fitted diffusion coefficient, one per profile, as shown in Fig. 3.4.b (diamonds). The average value
(dotted line) is D = 2.410~*mm? /s and the standard deviation among these fitted values, as defined
in Eq. (3.11), is ¢ = 4.8910 ®mm?/s which indicates a deviation around the mean of 2 %. The
measured value of the diffusion coefficient is 70% higher than the prediction of the Stokes-Einstein

relation using the effective radius 7.

3.4 Discussion

The novel method presented here allows to measure the diffusion coefficient D of a tracer (dissolved
or suspended) through a direct visualization of its concentration profile dynamics. The measured
profiles are fitted with the solution of diffusion equation, with the single fitting parameter D. We
calibrated the method measuring the diffusion coefficient of a suspension of identical spherical par-
ticles for which the Stokes-Einstein relation provides a theoretical estimate. Our results show that

the method is accurate: for our test tracer the discrepancy between the measured and the theoreti-
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Figure 3.4: a. Laboratory measurement of the diffusive concentration profile of methylene blue
(dots) for eleven time steps (t = 0.14 to 0.58 1p), fitted solution of Eq. (3.8) (solid lines) with initial
profile fo(x) (black dotted line), b. Value of fitted diffusion coefficient for each time step (diamonds),
mean value D (dotted line), standard deviation ¢ (pink shade area), estimation of D based on
effective radius 7 using the Einstein-Stokes relation Eq.3.4; c. Dilution index value E

cal value of the diffusion coefficient is smaller than the method uncertainty of 3%. While we show
that for non-spherical molecules or colloids using an effective radius to theoretically estimate the
diffusion coefficient can lead to a substantial error, we demonstrated that in the case of methylene

blue the value of D is underestimated by 70 %.

Moreover, the low standard deviation o between the measurement over several profiles (collected at
different times) implies that also with two concentration profiles (one for the initial condition and
one for the fit) could be enough to determine a measurement of D. Due to the non linear shape
of the concentration profile, we anticipate that it is better to collect profile data when the front is
not too sharp and not too diffused. In fact, the fit MSE becomes larger as the profile flattens or is
too steep, since there are less points over which the fit can be done: in other words, there are more

concentration values that are equal (or very similar, i.e plateau on the profile edges).
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Chapter 4

Impact of confinement on mixing within
porous media front: laboratory

experiment

4.1 Introduction

As discussed in Ch.1 one, to investigate and quantify pore scale mixing processes is crucial to
properly describe systems in which biological or chemical reactions are involved, in particular to
predict reaction rates and estimate their product mass. Recent technological development allowed
to improve visualization of pore scale processes, using real three dimensional rock structure [12]
or synthetic replicate of porous media [79, 35, 103] numerous studies tackle the question of solute
transport, reactive transport and mixing considering the micro-scale heterogeneity of the flow field.
However, to the best of our knowledge, no study have yet been carried to measure and describe the
effect of grains and the no-flux boundary condition they impose locally on mass transport, on the

overall mixing dynamic.

Experimentally two main challenges arise: i) to visualize the concentration field over a sufficiently
large number of pores so that it experiences both stretching and coalescence regime [22] and ii)
to work at relatively low Pe number, where diffusion impact mixing substantially, which is repre-
sentative of natural systems where pore flow velocity can be very low. Both points rise technical
challenges: i) the time to acquire an image covering a large domain (still ensuring high resolution of
the inner-pore space) should not exceed the time for the front to travel over more than one pore size,

strictly speaking the concentration front should not move "too much" during image acquisition and
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ii) if diffusion is important with respect to advection, then mixing happens very fast within pores
and it is not possible to capture the concentration field in a non well-mixed state at the pore scale,
therefore diffusion coefficient value, pore geometry and flow rate must be carefully tuned in order
to observe the temporal evolution of a concentration field where diffusion compete with advection

to limit mixing.

We developed a novel experimental set-up to measure at high spatial resolution a concentration field
being displaced within synthetic heterogeneous porous medium. In particular, it allows to observe
the heterogeneous distribution of concentration within pores, with 100 pixels covering the length
of an average pore throat size, and thus, to witness the effect of the impermeable grains on these
concentration distributions and the development of the front on a longitudinal distance of tens of
characteristic pore throat sizes. We show that pore scale mixing processes cannot be described by
the cutting edge models developed for Darcy scale flow field [72, 22] since they do not consider the

presence of impermeable and solid boundaries, the grains.

4.2 Pore scale measurements of concentration field

4.2.1 Flow cell

To investigate the fate of an invading front of a conservative (i.e. non-reactive) solute subjected
to diffusion and flow heterogeneity, we use microfluidic techniques to design a synthetic replicate
of a porous medium. The two-dimensional pore geometry is built by randomly positioning disks
(representing solid grains) of various diameter such that the pore throat size (the smallest distance
between two neighbor disks) is statistically distributed like a decreasing power-law; within a range
of values between 10 — 500 ym with an average of A = 124 ym. The microfluidic chamber is fabri-
cated using standard techniques of soft lithography and PDMS molding [104], then plasma-bonded
to a 1 mm thick soda-lime glass slide. Finally, the chamber has width W = 7 mm, length L = 50 mm,

thickness i = 0.05 mm, cross-section area A = 0.35 mm? and porosity ¢ = 0.47.

To initiate the flow a 500 uL glass syringe (Hamilton gas tight), driven by a syringe pump (Harvard
Apparatus, PHD 2000), is connected to a series of valves allowing formation of a sharp front injection
of the tracer solution into the chamber (see Fig. 4.1), previously saturated with a blank solution.
The syringe, valves and chamber are connected with Tygon tubes (internal diameter 0.5 mm). Two

reservoirs (one is the glass syringe itself, containing the blank solution, the other is a falcon tube
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containing the tracer) are connected to the inlet of the chamber, a second inlet is used to clean
the injection area by recirculating the tracer before it enters the porous medium, and the overall
flow is established by withdrawing fluid from a single outlet. The pump is set to withdraw at
a constant flow rate of Q = 51073 uL/s, which corresponds to a pore scale, average velocity, of

v=0Q/(A¢)=0.02mm/s.

a
& <
outlet Q >
-
—— W
b.
PDMS S
channel ———— Ih

glass slide ———

Figure 4.1: Experimental set-up to visualize the displacement of a concentration field in a synthetic
porous medium and measure pore scale concentration values. a. Porous medium replicate geometry
of length L = 50 mm: black disc stands for the grains, orange grid indicates image acquisition
pattern; blue falcon tube is the tracer reservoir which is open/closed by a 2-way valve, the syringe
is filled with blank solution and placed on a pump to trigger the flow, inlet and outlet of the chip
are connected to a 3-ways valve which allows cleaning of the injection area, blue arrows indicate
the cleaning circuit, v = 0.02 mm/s indicates the average flow velocity within the porous media,
Q = 51073 uL/s the pump withdraw rate; b. Cross-section of the porous medium: a PDMS channel
(gray area) of dimensions W =7 mm and h = 0.05 mm, with pillars for the grains, is plasma bonded
to a microscopy glass slide, white areas between the gray pillars indicate the pore space.

4.2.2 Tracer

In order to optically measure the concentration field of a displacing scalar, we choose methylene
blue (Sigma Aldrich). The measurement principle is the following: once a light source is homoge-
neously irradiating the sample, only portion of it will pass through reaching the camera: the more
concentrated is the tracer, the more light will be absorbed and the less of it will be transmitted.
The light transmittance (the ratio between the incoming and the transmitted light) is a non-linear

function of the tracer concentration and it is typically described by the Beer-Lambert law [98]:

I=1Iye*“+1p, 4.1)
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where Ij and I are respectively the irradiated and transmitted (thus detected) light, c is the tracer
concentration, I is the background light signal (the light detected when the tracer is highly concen-
trated thus, blocking most of the irradiating light) and s a parameter that depends on the physico-
chemical properties of the solution. For a diluted solution, where ¢ < 1/s, the relation simplified

and becomes linear, it can be reduced to:

1
[=1Iy(1—sc)+1I, thus, c=- <

Ip+1,—1
s\ )

7 (4.2)

To avoid a cumbersome calibration procedure, required to determine s, and get rid of the unknown

120 A
1I
0

Figure 4.2: Light intensity and concentration fields of an invading tracer in a porous medium ge-
ometry, the gray disks represent the grains and the space between then the pores. a. Light intensity
field when the medium is saturated with tracer, in the zoom-in view A indicates a characteristic
pore throat size; b. Light intensity field at initial time, there is no tracer and the chamber is filled
with blank solution; c. Light intensity field of the invading tracer at t = 32 7,; 4. Concentration field
at t = 32 1,, the arrow indicates flow direction.

values Iy and I, we express ¢ with respect to the initial concentration ¢q. Defining im0 as the light
intensity measured when ¢ = 0 (Fig. 4.2.b.) and im1 the one when ¢ = ¢ (Fig. 4.2.a.), Eq. (4.2) gives

im0 = Iy + I, we have:

1 /im0—1 1 (im0 —iml
cC = g < IO ) and CO — g <IO> 7 (4.3)

and finally we get the concentration value (Fig. 4.2.c.) as:

c im0 —1
—_—= . 4.4
co im0 —iml (44
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To define the relative importance of flow disorder and molecular diffusion, we consider the Péclet
number, defined as the ratio between the characteristic diffusion time over the average pore throat
size A and the characteristic time for the average fluid velocity v to displace fluid over A: Pe =
Av/D, where D is the diffusion coefficient of the tracer. Considering the average pore size in the
medium (A ~ 124 ym), the diffusion coefficient D is tuned in order to observe a competition between
diffusion and stretching for transport over several pores: Pe > 10. To do so, the tracer solvent is a
mixture of milliQ water (30%) and glycerol (70%), that is about 40 times more viscous than water,
so that the diffusion coefficient is lowered by 40 times with respect to its value in water: given
Dyat = 4.8107% mm?2 /s, extrapolated from the value measured in Ch. 3 for a water-glycerol mixture
of ratio 80%-20%: D = 1.210~> mm?/s. The tracer concentration dissolved into the water-glycerol

mixture is 431072 g/mL.

4.2.3 Optical system and image processing

The microfluidic chip is placed under an inverted microscope (Nikon Eclipse Ti-E2) equipped with
a 4x magnification objective with low numerical aperture (NA = 0.3) in order to observe in focus the
whole depth of the chamber & = 0.05 mm. Gray scale images are captured at 16-bits color depth
with a Photometrics Prime95B camera. The pixel size is 11ym. To cover a significant number of
pores we acquire a large image composed of 7x2 individual images stitched together. The resulting
image, considering the magnification used, has a size of I x w = 10.6 x 3.2 mm, this correspond to
81 A along the flow direction and 24 A along the transverse one. Each image is a matrix of pixels
whose value ranges from 0 to 2!® — 1. We add to the light path a band-pass filter centered on the
peak transmission wavelength of the tracer (Semrock single-band band pass filter 662 & 11 nm) to

get a better contrast.

For the designed experimental conditions, the relation between detected light I and concentration c
is linear, thus, the uncertainty propagation of I, whose information is stored into the matrix im, on
the concentration value can be estimated following standard error analysis [105]: the normalized
concentration c/cp relative uncertainty is equal to the one on I. We assess the light intensity relative
uncertainty o7/1 as the standard deviation of the matrix im1 divided by its own average ;1 / imy
which is 0.3%. Thus, we convert the light intensity into a concentration field through eq. (4.4) and
we set to zero all concentration values below ¢,, = 31073 ¢y and we set to one all values above

1_Cm.
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424 Procedure

Before being used for an experiment, each microfluidics chip is placed in a vacuum chamber for
10 minutes, to deplete the air from the PDMS (which is porous and permeable to gas) allowing its
saturation after the first liquid injection. The chip is first saturated with a blank solution, the water-
glycerol mixture containing no tracer, then, the injection area is cleaned through a re-circulation
procedure following the one descried by [15]: for 20 s the tracer flows, at flow rate 0.05ul/s, from
the reservoir to the syringe without entering the porous medium ensuring pure concentration within
the tube and maximizing it within the injection chamber (see blue arrows in Fig. 4.1). The syringe
is reset to experimental flow rate Q, the 3-ways valve is switched to allow the flow toward the
porous medium outlet and the tracer solution is continuously injected, producing an initially sharp
front with the defending fluid, while image acquisition starts. The acquisition of one large image,
made of 7 x 2 single images stitched together, takes 5 s, after which a new image acquisition starts

immediately. Exposure time is set to 1 ms.

4.3 Results

For the designed conditions, the system Péclet number would classically defined as Pe = Av/D =
206. However, the characteristic time of diffusion in such a confined space is Tp = A>/(2 D %) ~ 65 s
as we show in Ch. 2, thus, since the characteristic time of advection over a pore throat 7, = A/v =
6.2 s, we estimate the Péclet number as Pe = Av/(D7?) = 21. Looking at the macroscopic scale of
the whole porous system, the characteristic time of advection over one pore volume 7,, = /v =
530 s (about 857,). The acquisition of one large image lasts for about 5 s which is close to T,
ensuring that the front will not travel much more than one pore throat length during capturing and
stitching process. We analyze the concentration field from t = 0, when the entire front enters the
field of view, to t = 56 1,, time at which the foremost front tip begins to leave the field of view: 49

time steps in total.

Figure 4.3 shows four snapshots of the normalized concentration c/cy at times t = 8, 15, 28 and
417,. We designed this experiment to get the invading front as sharp as possible: however, the
solute experiences some dilution within the microfluidics, just prior entering the porous system on
the left-hand-side of the field of view during the cleaning and re-circulation phase. Thus, the front
enters the porous system with some initial longitudinal dispersion, a process that occurs anyway

while passing through the porous medium.
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The no-slip boundary condition taking place at the impermeable grains walls induces a flow hetero-
geneity within the microfluidic chamber: the middle point of each pore throat has a higher velocity
than the rest of it with a profile, from grain wall to grain wall, that is approximately parabolic [28].
This happens because we designed the flow cell so that the thickness of the cell is not governing flow
and mass transfer, the ratio between a pore throat and the chamber vertical gap is on average close
to one, so that we find the parabolic profile in both directions. The experiment last for about 6 mn
which is much shorter than the diffusive time over the channel thickness h#?/D = 20 mn ensuring
that Taylor dispersion do not occur. Due to the flow heterogeneity, the invading front experiences
stretching and it gets deformed to pass through the tight and confined space of the pores. There,
the competition between fluid stretching and molecular diffusion controls the local concentration

transport and the consequent mixing dynamics.

To quantify the macroscopic (landscape size) transport properties, we consider the longitudinal con-

centration profile, which is the transverse average P(x) of ¢/co. For each time step we compute P(x),

as shown as a black line on Fig. 4.3 superposed to the concentration fields): as a first approximation

this quantity can be modeled using the classical advection-dispersion equation:
oP  dP 02P

v— + D*

o Yo TP e (4.5)

with D* an unknown dispersion coefficient, a macroscopic measure of solute spreading which scales

a v N b
1
0
— 20\ L
c d.

[ J 9° AL,
[ 2 .g'g.t

Figure 4.3: Normalized concentration field c/cy of invading front in a porous medium structure;
gray discs stand for solid and impermeable grains, area between them for the pore space, red
arrow indicates flow direction, vertical red line position Ly where the break-through curve (BTC) is
computed; Pe = Av/D = 219. a — d are snapshots at time: t = 8, 15, 28 and 417, respectively.
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as Pe [65]. The solution to the previous eq. 4.5 is, for a sharp injection, given by [2]:

P(x,t) = % [1 — erf (%ﬂ . (4.6)

where xg = vt is the averaged front position, the longitudinal position where P = 1/2. We fit Eq. 4.6
to the measured concentration profile, where D* is the only fitting parameter. The measured and
fitted profiles are presented in Fig. 4.4.b. By fitting these profiles over the 49 time steps, we obtain

an average value for D* = 891072 mm?/s.
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Figure 4.4: Transport measures of a concentration field invading a porous medium structure
(Fig. 4.3). a. Complementary BTC recorded in the middle of the domain at location L,, time is
normalized by the advective time over a pore volume; b. Longitudinal projection of concentration
field (Figs. 4.3.a.-d.), for time t = 17, 24, 33 and 41 1, time increase from light to dark colours, black
solid lines are given by Eq. 4.6 with D* as fitting parameter, the averaged value obtained over all
time steps is D* = 8.9 10~3 mm?/s; c. PDF of concentration field shown in a.,b., c. and d. with time
increasing from light to dark colours, black solid line indicate a ¢! scaling for early time and black
dashed a c=3/4 scaling for later ones.

Another classical diagnostic quantity used to quantify transport in porous systems [65] is the break-
through curve (Fig. 4.4.a.) which is the time series of the normalized and averaged concentration
(along the transverse direction) at a defined downstream location L, (see Fig.4.3a), in our case the
middle of field of view. The BTC can be modeled using the advection-dispersion equation 4.6
c(x = Ly, t)/co using the value of D* previously fitted on the longitudinal projection of the concen-
tration field. The model prediction is given as a black solid line in Fig. 4.4a and characterizes well

the observed solute BTC.

The concentration field can also be described in term of its concentration distribution, i.e the nor-

malized frequency of occurrence of concentration values in given ranges, also called probability
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density function (PDF). For a continuous system (as with a Darcy scale description), at all times the
transport concentration PDF is expected to be the same, scaling as 1/c for low concentration values,
reaching a minimum around ¢ = 1/2 and increasing again for larger concentrations. This can be
shown by following the lamellar description of mixing proposed by [82, 72, 22]: the concentration
PDF can be seen as the superposition of individual lamellas PDF. Considering an invading front
(and not a pulse as in [82, 72, 22]), the stretching mechanisms as the effect of modifying the space
over which the normalized concentration c/cy varies between 0 and 1, but it does not affect the
minimum or maximum values in each lamella. Therefore, the superposition of non-overlapping
lamellae that experience different stretching results in the same PDF as the one of an individual
lamellas whose concentration ranges between 0 and 1 following an error-function like shape (solu-

tion of diffusion equation for a front in unconfined conditions, as discussed in Ch.2).

However, as the front travels downstream through the impermeable grains the slope of the distri-
bution changes, it goes from ¢! to ~ ¢~3/4. This is shown in Fig. 4.4 ¢ for the same four time steps
presented in Fig. 4.3, with time increasing form light to dark color. This is probably the consequence
that within pores the lamellas do not follow an error-function like distribution, but, as discussed in
Ch.2, the diffusion mechanism within a single pore is affected by the no-flux boundary conditions
at the grains wall. Moreover, probably also the fluid stretching, the other key mechanism control-
ling the mixing dynamics (and, thus, the concentration PDF), is affected by the presence of solid

impermeable grains.

4.4 Conclusion

As already demonstrated by [25] at Darcy scale, where the individual pores are not resolved, we
observe that macroscopic measurements of displacement and spreading such as longitudinal pro-
jection of concentration field and early times BTC are well predicted by the classical advection
dispersion models. Observations of transport dynamics for longer times, i.e. the BTC for times
much larger than the pore volume time scale, would probably deviate from the advection-dispersion
prediction since small concentrations fluctuations, associated to flow heterogeneity, would become

important.

Considering as diagnostic quantity for mixing dynamics the concentration PDEF, following [66, 72,

22], our measurements show that at pore scale, the presence of solid and impermeable boundaries,
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the grains, triggers a different mixing dynamics that affect the concentration distribution statistics
which deviates from what it would be expected for an invading sharp front within a continuous
non-confined domain. We hypothesize that the key processes of diffusion, stretching and merging
of lamellas are affected by the confinement conditions induced by the presence of the grains, im-
pacting the overall mixing dynamics. In order to understand better this complex problem, in the
next chapter we explore the powerful tools of numerical simulation to investigate the effect of local

stretching in confined media.

As discussed in Ch.2, diffusion is affected by the no-flux boundary conditions at the solid interface.
Similarly, stretching is likely to be limited by the presence of impermeable grains. Our results
indicate that the confined nature of porous media, in particular the specific boundary conditions
constraining flow and transport around the solid obstacles, must be taken into account to correctly
predict pore scale concentration field distributions. We suggest that such a model could be derived
by extending the lamellar formalism [66, 72, 22] to adapt diffusion and stretching mechanisms to

the dynamics of a confined environment.
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Chapter 5

Impact of confinement on mixing within

porous media: numerical simulations

5.1 Introduction

We consider the fluid flow through two heterogeneous porous media, focusing on different spatial
scales, one resolving the detailed structure of the pore space (see Fig. 5.1 a. where the gray disks
represent solid impermeable grains), but describing only a few tens of them, and the other spanning
over tens of thousands of pores, without resolving their structure (see Fig. 5.1 b. where the color

represent the value of the permeability field k).

For the first case, as described in this thesis introduction, chapter 1, the incompressible fluid motion
is described in terms of momentum conservation that for the low Reynolds number Re =7 A /v (u
is the average fluid velocity across the characteristic length scale A and v represents the fluid kine-
matic viscosity) corresponds to the solution of the Stokes equations. For the second case, the larger
scale fluid flow § description is provided in terms of the Darcy equation (5.2) and a continuous

permeability field k, representing the local average pore space.

In both scenarios, once the flow solution i or g is known, the transport of a dissolved tracer is
controlled by the advective displacement and diffusive flux: thus the spatio-temporal evolution
of the tracer concentration field c is governed by mass concentration described by the advection
diffusion equation (5.7). Neglecting diffusion, the fate of a fluid element transported by the flow
tield is provided by integrating the motion equations

dx

o3 =olx(t). (5.1)
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Figure 5.1: Porous medium properties. a. Small scale: the detailed structure of the grains arrange-
ments (gray disks) is characterized by a Delaunay triangulation (blue segments) connecting neigh-
boring grains. The size A of each pore throat is defined as the distance between the boundaries of
close grains (a few examples around a single grain as red segments). b. Larger scale: the porous
structure is replaced by a continuous permeability field k, shown with darker colors for higher val-
ues. The random value of k at each location is log-normally distributed with a spatial correlation
length A over which the value of the permeability field is almost constant.

5.2 Method

Here, we consider the numerical solution of flow and transport presented in the following were
obtained using commercial software COMSOL 5.5. The design of the simulations was done in
collaboration with Prof. Luis Cueto-Felgueroso from UPM Madrid. Particle tracking simulations

were performed using an in-house code developed by Filippo Miele [106].

5.2.1 Numerical solution for fluid flow and advective transport
Flow solution of the Darcy’s law for larger scale

In its natural state water moves in the subsurface and this movement is driven by a pressure gradi-
ent. The basic equation governing groundwater flow, for a saturated medium, was formulated by
hydraulic engineer Henry Darcy in 1856: the law carrying its name stipulates that the flow rate Q
through a porous medium of length L and cross-sectional area A is proportional to the hydraulic

gradient across the medium itself (head-loss divided by the flow path length L) as:

Q_ _gdh_ kg, (5:2)
1 p
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Figure 5.2: Darcy scale field. a. Probability Density Function of the velocity magnitude; b. Probabil-
ity Density Function of the permeability field k.

where the proportionality constant K [m/s] is the medium hydraulic conductivity, p [Pa s] the fluid
dynamic viscosity, k [m?] the medium permeability field, p [Pa] the local pressure and Q/A the
average (or Darcy) fluid velocity. It describes the ease of a fluid to move through the solid matrix
and it is a function of both fluid and medium properties. This important law can be extended to

more dimensions, considering the local velocity 7, pressure p and permeability k fields as:

k
7=—=Vp. (5.3)
T=—,Vp

We consider the permeability field shown in Fig. 5.1 b whose statistical distribution (PDF) is shown
in Fig. 5.2 b and we impose an average velocity at the medium inlet Q/A = § = 107> m/s (which
corresponds to the same average fluid velocity imposed in the experiment described in Ch.4). More-
over, no-slip conditions (zero fluid velocity) are imposed at the top and bottom domain boundaries.
The fluid non-compressibility results in a divergence-free velocity field, shown in Fig. 5.3 a, for
which

V.- (kVp)=0. (5.4)

We solve Egs.(5.2) and (5.4) for 7 and p using a finite element scheme; the fluid velocity values are
obtained over an irregular mesh nodes and then interpolated on a Cartesian grid of elements of size
1.510~* m. The domain is a rectangle of size L x W = 1.7 x 1 m, which is discretized using a mesh
with element size ranging between 10~#m and 10~°m, fluid density p = 1000 kg/m? and viscosity
u = 0.001 Pa s, the resulting Reynolds number is Re = 0.4. We generate a log-normal distributed

permeability field with permeability values between 10712 m? and 10~ m? (representing a coarse
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Figure 5.3: Normalized magnitude of the computed velocity fields: a. Darcy’s flow and b. Stokes
flow.

sand) [3] and isotropic correlation length A = 0.02 m (represented in Fig. 5.1 b by the diameter
of the blue circle). Using the commercial software COMSOL, we compute the pressure field, the
longitudinal and transverse fluid velocity, q, and g, respectively. The resulting velocity magnitude

as q = ,/q% + g3 has a statistical distribution (PDF) shown in Fig. 5.2 a and it spans a wide range of

velocities, similarly to the distribution of permeability field values shown in Fig. 5.2 a.

Pore scale medium properties

We consider the porous system as in Fig. 5.1 a resolving the solid and impermeable grains, around
which no-slip (fluid velocity is zero) boundary condition apply. The pores geometry is similar to
the one in [21], whose solid and impermeable structure consists of non overlapping circular disks
of random position and radius. This disordered arrangement of disks can be characterized geomet-
rically by constructing a Delaunay triangulation of the disk centers [e.g., 107]: each triangle defines
a pore body and each edge defines a pore throat (a few examples as red segments in Fig. 5.1 a). The
two-dimensional domain is a rectangle of size L x W = 7 x 10 mm, which is the same geometry
used in Ch. 4 for microfluidics experiments, of characteristic pore throat size A = 130 um, given by

the average pore throat size, porosity ¢ = 0.47.

We characterize the statistical properties of the medium through the distribution of pore throat
size, A = d — Ry — Ry, where d is the distance between the center of two neighboring disk that
are connected by an edge of the Delaunay triangulation, and Ry, R; are their respective radii. The
random position and size of the disks is characterized by a power law distribution, probability
density function (PDF), of their radii pr(R) ~ R'~2f, with B = 1.8, which have been generated to be
spatially organized such that the PDF of pore throat size is a power law p,(A) ~ A~7, with y =2/3

with an exponential cut-off for large pores. The considered medium structure is characterized by
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Figure 5.4: Small scale medium properties. a. the PDF of the grain radii R, b. the PDF of the pore
throat size A defined as the distance between neighboring grains wall.

the grain radii R distribution that, combined with their location, determine the pore throat size A
(represented by red segments in Fig. 5.1 a) distribution through which the viscous fluid is forced to

pass.

Flow solution of Stokes equations

We consider the same fluid as in our experiments discussed previously in chapter four: a mixture of
water and glycerol of density p = 1194 kg/m? and viscosity # = 31072 Pa s. Flow equations at this
scale are derived considering momentum conservation, for Newtonian fluids they are expressed
as a set of partial differential equations: the Navier-Stokes equations. For flow characterized by
low Reynolds number (describing the ratio between inertial and viscous effect), typical of confined
media, inertia can be neglected (flow is dominated by viscous forces) and the flow problem is
reduced to the so-called Stokes equations. Considering an horizontal plane, thus neglecting gravity,

we obtain:

Vp =u V21,_[, (5.5)
We consider the case of an incompressible fluid for which the resulting velocity field is divergence

free,or V -ii = 0.

We use the commercial software COMSOL multiphysics to numerically compute the longitudinal
and transverse fluid velocity u, and u, solving Stokes incompressible flow and we designate the

velocity magnitude as u = , /u3 + u3. The Eq. (5.5) are solved for uy and u, over an irregular mesh
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with element size ranging between 1.25 107 m and 1.25107° m; then, the fluid velocity values are
interpolated over a Cartesian grid with element of 7107 m. We impose no-slip conditions (fluid
velocity is zero) at the top and bottom domain boundary as well as around the solid grains, a fluid
velocity u = 107> m/s is imposed at the inlet at a distance ~ 3 A from the first row of grains, result-
ing in a Raynolds number Re < 1072, verifying a posteriori that the flow is laminar. The magnitude

of the computed velocity field is shown in Fig. 5.3 b.

The link between the pore throat size A PDEF, capturing the host-medium heterogeneity and the low
velocity PDF can be understood modeling the flow, in analogy with pore-network models [e.g.,
108, 109], as equivalent to the one within a collection of parallel pipes with different size as
in [21, 110]. The fluid velocity through each pore, also called the porelets, would be, then, ap-
proximated with the one of a pipe: Hagen-Poiseuille flow. While pore-network models focus on the
pores contribution to the medium permeability, its overall ability to transmit fluid, the link between
medium structure and the low velocity distribution can be established focusing only velocities in
the range 10 to 10* times smaller than the mean Eulerian velocity, u/% < 1 (with % the average
pore velocity over the domain): the pores that do not really contribute much to the average velocity

value and, thus, on the medium permeability.

In this context, the velocity magnitude through the porous landscape is locally controlled by the
smallest openings of size A: the pores conceptualized as pipes of width A and length A, driven
by a single effective pressure gradient (Vp) across the pipe itself. This conceptual framework
does not take into account the pores connectivity and it is consistent with the medium isotropy,
directionality independence, typical of many porous media [2]. The fluid velocity through a pipe

has only longitudinal component [111], and its magnitude has a parabolic profile:

()]

, the maximum velocity, in the middle of the pipe (y = 0), is up = AA?/4 and

u(y) = A

—(Vp)
2u

the smallest velocity, at the no-slip pipe walls (y = £A/2), is u,, = 0. For a collection of pipes with

where A =

a given width distribution PDF(u|A), represents the conditional probability of the local velocity u
within a pipe of given width A. Following [21] the following scaling for the low velocity distribution,

controlled by an ensemble of distributed porelets, is

PDF,, (1) ~ u~ "2 (5.6)
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Figure 5.5: PDF of velocities in Stokes flow field. a. Logarithmic plot shows the power-law scaling of
low velocities values where the exponent is controlled by -y given by the distribution of pore throat
size (see Fig. 5.4 b.); b. Semi-logarithmic plot emphasises the exponential cut-off followed by high
velocities values.

where 7 is the characteristic exponent of the pore throat size distribution. A detailed analysis
of our numerical computation shows that the low velocity PDF is well described by the previous

expression, as highlighted by the double logarithmic plot shown in Fig. 5.2.1 a with an exponential
cut-off, highlighted by the semi-logarithmic plot of Fig. 5.2.1 b.

5.2.2 Numerical simulation of transport

Solute transport is simulated using the advection-dispersion equation where the conservation of
mass controls the spatio-temporal evolution of a solute concentration c(x, t) in a flow field 7 (which

is the Darcy solution 7 or the Stokes one if, depending on the considered case):

gfcz—v-f:—ﬁ-Vc+DV2c, (5.7)
where ] represents the local mass flux composed by the advective term %c (7 representing the
local velocity solution of Darcy or Stokes equations depending on the considered scenario) and
the Fickian term DVc¢ (D representing the solute effective dispersion or diffusion coefficient). The
initial condition is a sharp front with ¢y = 1 initial condition, no-flux B.C at the top and bottom
of the domain and around the grains for the pore scale simulation. The solver uses a backward
Euler scheme and time stepping is optimized by the solver. In the Darcy field the time for the
flow to fill one pore volume is defined as 7, = L/ = 1.5 10° s and the simulation runs for 110 Tpo-

Similarly for the pore scale simulation (Stokes flow) 7,, = [/% = 435 s and the simulation runs for

60 7. Dispersion/diffusion coefficients are set to be D* = 3 10~% mm?2 /s for the larger scale and
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Figure 5.6: Particle tracking simulation results. a. Large view of the two-dimensional Stokes solution
velocity field magnitude, colormap from light to dark for increasing values, through the considered
porous system superposed to 100 trajectories (blue solid lines), whose initial position is represented
by a red dot placed on the left hand side of the system. b. and c. closer views of the same set of
trajectories.

D = 1.2107° mm?/s (matching the value of the tracer used in the experiment discussed in Ch.4) for

the pore scale simulation.

5.2.3 Particle tracking

We study transport by the computed velocity fields by tracking the displacement of fluid particles
along streamlines (no diffusion, just advection). The fluid trajectories are computed using a fourth-
order Runge-Kutta time stepping scheme. Within this framework, the velocity of each transported
particle u(x) located at x is evaluated by locally interpolating the Eulerian velocity field over a local
grid of 10 x 10 pixels centered around the particle location with a bicubic polynomial. The fourth-
order Runge-Kutta time stepping scheme is implemented using the Matlab function ode45, which is
a powerful tool to solve non-stiff ordinary differential equations (ODE). We use ode45 to integrate

the particle p trajectory (x,,y,,t,) which is solution of two ODE at the same time:
dt dt
dx,(x) = /0 vy(x)dt, dy,(x) = /0 vy(x) dt, (5.8)

where the x— and y— velocity components and its modulus v = |/v% + v} (v is the Darcy flow field
or the Stokes flow field, depending on the case under consideration) are evaluated at the position
x = (x,y) of the particle p, as discussed above. In order to get a number N, of trajectories of equal
longitudinal length, in other words every particle moves from the medium inlet to the medium

outlet, this calculation will result in trajectories of different size (different number of points), since
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Figure 5.7: Particle tracking simulation results. a. Large view of the Darcy’s solution two-
dimensional velocity field magnitude, colormap from light to dark for increasing values, through
the considered porous system superposed to 100 trajectories (blue solid lines), whose initial position
is represented by a red dot placed on the left hand side of the system. b. and c. closer views of the
same set of trajectories.

in every location where the flow is stagnant (among tight grains or within a low permeability zone)
the time needed to move along is much longer than in faster zones. To avoid this problem and
to obtain a similar number of points per trajectory, while a trajectory get integrated by the Matlab
function ode45 we sample the solution over constant spatial steps of size ds along the trajectory itself
(along the curvilinear coordinate), instead of at constant temporal increments dt. Therefore, instead

of integrating each step between t and t + dt, we integrate the motion of each fluid element p over
variable time increments, between t and t + dt,(x), where dt,(x) = % and
dty(x) dty(x)
dx, (x) = / op(x)dt,  dy,(x) = / o, (x) dt. (5.9)
0 0
In Fig. 5.6 are shown 100 trajectories integrated over the velocity field Stokes solution within the
resolved pores and in Fig. 5.7 are shown 100 trajectories integrated over the Darcy’s flow solution.

5.3 Results and discussion

5.3.1 Darcy scale
Concentration and concentration gradient fields

We analyze the temporal evolution of a concentration field as it is transported by the computed

Darcy velocity field. For the analysis of our transport simulations, we define two time scales that
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we will use to normalize time. The first is the characteristic time to travel over one correlation
length A = 0.02 m of the permeability field 7, = A/7g, and the second one is the time required by the

invading solute front to move across the porous system up to the position Ly where the BTC will be
measured, Tpp = Ly /4.
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Figure 5.8: Normalized concentration field c/cy of invading front in Darcy flow field with average
velocity 7 = 107> m/s and heterogeneous permeability field of correlation length A = 1072 m, Pe =
370. Snapshots at time: t = 1.30,3.34,13.7 and 56.8 7,; the vertical dashed line denotes the position
Ly where BTC has been computed.

Snapshots of the computed tracer concentration field are shown in Fig. 5.8 a — d at four time steps
t = 1.30,3.34,13.7 and 56.8 7,. As the concentration field travels downstream it experiences hetero-
geneity of the flow field and we observe the originally transverse front to undergo deformation into
an elongated structure, see Fig. 5.8, due to the spatial contrast of local fluid velocities. In this sce-
nario, such fronts can be described as an ensemble of strips aligned along the flow direction, each
strip being subject to competitive mechanisms of diffusion (along the strip transverse direction) and
local stretching (along the local flow direction). In such context, these strips are typically called

lamella and the front undergoes the so-called lamella-like topology described by [82, 72, 22].

Figure 5.9 shows the magnitude of the gradient of the concentration field at times ¢ = 1.30,3.34,13.7

and 56.8 1;:
ac\? ac\ 2
ereo = (2) 4 (2 510

Initially, the gradient magnitude looks-like a vertical strip: as time advances, it gets displaced with

the average fluid velocity and it elongates about it in the discussed lamellar structure. The zoomed-
in view shown in Fig. 5.9 for time 13.7 7, highlight the role played by low permeability zones: there

the front substantially slows down compared to the surrounding faster flow zones. This velocity
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contrast stretches the front keeping the gradient magnitude steep (darker color) against the action

of dispersion that tend to smooth-down the concentration values and, thus, the gradient.
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Figure 5.9: Concentration gradient field Vc/cy of invading front in Darcy flow field with average
velocity 7 = 107> m/s and heterogeneous permeability field of correlation length A = 1072 m, Pe =
370. Snapshots at time: t = 1.30,3.34,13.7 and 56.8 7.

To understand the role played by fluid stretching we follow the recent study of Le Borgne et al. [63]
and we quantify the front deformation in terms of the statistics of Lagrangian particles simply

advected by the computed velocity field.

Local stretching and elongation

Local stretching will be quantified in terms of the elongation experienced by fluid elements located
along a strip initially oriented in the main flow transverse direction (the blue line in Fig. 5.10). As
time passes, each fluid element composing that strip is moving with the flow, we neglect diffu-
sion here, following the particle tracking scheme discussed above. While moving with different
velocities, the heterogeneous flow field deforms that strip, as shown in Fig. 5.10 for three times

t =3, 23, 43 7, from dark to light color, superposed to the velocity field magnitude.

Zones of low velocity slow down significantly the front while increasing its length. Due to flow
heterogeneity the front does not deform homogeneously: at different position, along the front,
fluid elements get separated by different amount of space. Moving along the front, we model it as
composed by a sequence of fluid elements labeled k = 1 ..., N, from bottom to top in Fig. 5.10.
Initially these fluid elements are equally spaced with distance dsp among each neighboring couple

k and k — 1. After a time t, the distance among particles becomes:

dsy = \/(xk = xk1)? + (ke — Yr-1)? (5.11)
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20cm =20 A

0

Figure 5.10: Deformation of a strip, initially oriented transverse to the flow direction (vertical blue
line), superimposed on the heterogeneous Darcy velocity field magnitude q/4. The deformed strip
is shown at three times t = 3, 23, 43 7, from dark to light color. While the strip is stretched and
elongated by the contrast of velocities it remains a continuous line. Green and red rectangles shows
zoom-in views of a portion of the strip up to the individual fluid elements labeled k.

and the overall front length would be:

Ny
S(t) =) ds. (5.12)
k=1

As shown in the two zoomed-in view of the deforming front location, inset of Fig. 5.10, the fluid par-
ticles are moving through the continuous Darcy velocity field accelerating and slowing down based
on the local velocity magnitude, but never encountering impermeable boundaries (the permeability
tield is defined positive in this context). This acceleration/deceleration is reflected in the local fluid
particles separation and approach controlling the stretching/compression of the front. In particular,
the pink-framed inset of Fig. 5.10 shown the separation between two neighboring particles, k and
k —1 at two successive time steps of the particle tracking simulation (from the dark to light color as

time increases).
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t=149.97,

Figure 5.11: Concentration field c/c¢ of the invading front, gray discs stand for solid and imperme-
able grains, Péclet number Pe = 250. Snapshots at time: t = 2.38, 7.13, 16.6 and 49.9 7,. The vertical
dashed line denotes the position L, where BTC is computed.

5.3.2 Pore scale
Concentration and concentration gradient fields

We analyze the concentration field of a tracer displaced within the considered fully resolved porous
medium geometry: an example of the measured fields at time t = 2.38,7.13,16.6 and 49.971, is
given in Fig. 5.11. The vertical dashed line represents the location where the BTC is measured. As
the concentration front enters the porous medium, it get distorted into a lamellar topology similar
to what is observed at Darcy scale: in each pore a lamella is subjected to the local pore velocity
and it gets elongated by stretching along the local flow direction, while diffusion smooth-out the
concentration value increasing the lamella extend in the transverse direction. While the lamella
width increases the diffusing concentration eventually encounters the impermeable wall of a grain
(representing physical confinement), where the mass flux is null. In other words, mass accumulates

at the grains walls and concentration increases.

t=2.387, t="7137, 3 t=16.67, - \ t=49.97, 40
Y \\( P
=\ \
¢ 3 N
( 0\ o9 30
= N\ <« 20
7 7 -
A — N
( 10
—
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Figure 5.12: Concentration gradient Vc/co of the invading front, Pe = 250. Snapshots at time:
t =2.38,7.13,16.6 and 49.9 7.

Figure 5.12 show four snapshot of the concentration gradient magnitude, as defined also for the
Darcy scale scenario in Eq. (5.10), at times t = 2.38,7.13,16.6 and 49.9 7,. At early time, the front is

basically vertically aligned and the gradient is quite homogeneous along the vertical direction while
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it varies due to diffusion) along the longitudinal direction. As time passes, the front deforms and
undergoes stretching due to fluid velocity heterogeneity among the grains. The gradient magnitude
value becomes variable along the front location since at different locations different stretching are

exerted.

Local stretching and elongation

We investigate the fluid stretching induced by the flow heterogeneity within the porous structure
shown in Fig. 5.13 following the same procedure and computing the same diagnostic quantities
as for the Darcy’s flow scenario considered above. Therefore, local stretching will be quantified
in terms of the elongation experienced by fluid elements located along a strip initially oriented in
the main flow transverse direction (the blue line in Fig. 5.13). As time passes, each fluid element
composing that strip is moving with the flow (in order to study the only effect of front deformation
due to fluid stretching we neglect diffusion here) following the particle tracking scheme discussed
above. While moving with different velocities, the heterogeneous flow field deforms that initial
strip, as shown in Fig. 5.10 for three times t = 6, 22, 39 7, from dark to light color, superposed to

the velocity field magnitude (from light to dark color for increasing velocity values).

Figure 5.13: a. Deformation of a strip, initially oriented transverse to the flow direction (vertical blue
line), superimposed on the heterogeneous Stokes velocity field magnitude. The deformed strip is
shown at three times t = 6, 22, 39 7, from dark to light color. As the strip is advected in the porous
medium it get pin behind the grains; b. Zoom-in view of the strip as it encircle a grain, it forms an
anchor point persistent throughout the strip elongation in the domain; c. Zoom-in view showing
the individual fluid particles at two times (n — 1 and n) as they are advected towards the grains.

As shown in the three zoomed-in view of the deforming front location, insets of Fig. 5.13, the

fluid particles are moving through the continuous pore scale velocity field accelerating and slowing
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down based on the local velocity magnitude, getting around the impermeable boundaries of the
solid grains wall. This acceleration/deceleration is reflected in the local fluid particles separation
and approach controlling the stretching/compression of the front. In particular, the cyan-framed
inset of Fig. 5.13 shown the separation between two neighboring particles, at two successive time
steps n and n + 1 when we sampled the particle tracking simulation (from the dark to light color as
time increases). As the front passes by a grain the front surrounds it with a fluid envelop that get
elongated homogeneously, as shown by the relatively constant separation of dots visible behind each
grain (see inset of Fig. 5.13). We understand that acknowledging the fact that close and around the
grains, fluid velocity is very small and approaches zero, due to no-slip boundary conditions, while
further away the fluid elements can move faster. Thus, in first approximation, all fluid elements left

behind a grain move homogeneously and, thus, get separated from each other at the same rate.

5.3.3 On the role of confinement on mixing

We considered two simplified case studies for mixing within heterogeneous porous systems that
differ from the observation scale: one resolves the detailed structure of the pore space, the other
captures the larger scale without resolving the solid grains arrangements. The first case heterogene-
ity is dictated and controlled by the pore throats size distribution, the length scale through which
the fluid is locally forced to pass while governed by viscous forces. For the second case, the detailed
medium structure is replaced with a continuous permeability field whose local value represents the
ability of the medium to locally transmit fluid for a given pressure drop. Both case studies have a
similar heterogeneity in terms of the resulting velocity field that ranges across four orders of mag-
nitude. Moreover, to make the two cases comparable we considered a spatial correlation length A

such that the considered domains longitudinal size L is L/A ~ 100.

In both scenarios, the longitudinal concentration profile P is well described by the solution of one

dimensional advection-dispersion equation:

P(x,t) = % [1 —erf (%ﬂ . (5.13)

where xg = Gt or xg = uy is the average front position for the Darcy and pore scale case, respectively
and D* begin the effective dispersion coefficient which is a measure of the solute spreading about its
own front. Figures 5.14 a. and 5.15 a. show as colored solid lines the observed profiles superposed to
the fitted model Eq. (5.13) (black solid lines), where D* is the only fitting parameter that minimizes

the sum of the square differences between the numerical solution and the model itself. The averaged
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value of the fitted D* over all times is 0.11 mm? /s for the Darcy scale and D* = 421073 mm?/s
for the pore scale simulation. Note that the latter value is close to the one obtained in the transport
laboratory experiment (D* = 310~3 mm?/s in Ch.4) performed within the same geometry printed

into a microfluidic device.

An important macroscopic measure of solute transport is the Break-Through Curve (BTC) which
is a time-series of c/co, the transversely averaged concentration, normalized by the injected one cy,
measured at the downstream position L, (see vertical red line in Fig. 5.8). Here we consider the
complementary BTC, or 1 — c/co which is shown in Fig. 5.14 b for the Darcy scale and Fig. 5.15 ¢ for
the pore scale, respectively. In both cases, the complementary BTC is constant, and equal to unity,
until time reaches T,,, which means that the average front breakthrough at L,; then, it decays. This
temporal behavior can be modeled with the previously introduced advection dispersion framework

dimensional advection-dispersion equation, evaluated at x = L,:

P(x =Ly, t)/co = % [1 —erf (%)] , (5.14)

where the dispersion coefficient D* is the one fitted on the concentration field longitudinal projec-

tions. For normalized times ¢/7,, > 1 it start to decay exponentially with characteristic time scale

a b. c
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Figure 5.14: Results for the Darcy scale. Transport and mixing measures of a concentration field
displaced in a Darcy flow field. a. Longitudinal projection of concentration field (Fig5.8 a.-d.),
for time t = 3, 13, 27 and 43 7,, time increases from light to dark colours, black solid lines are
Eq. 4.6 with D* as fitting parameter, value obtained over all time steps is D* = 0.11 mm?/s; b.
complementary BTC recorded in the middle of the domain, time is normalized by the advective
time over a pore volume, black solid line is prediction of Eq. (5.14) with D* fitted on the longitudinal
projection of concentration field; c. Segregation intensity, time is normalized by advective time over
the permeability field correlation length A.
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D*/ ﬁz. We note that for later times, when the BTC is smaller than 1072, the BTC deviates from
the exponential decay exhibiting the so-called tailing, a signature of the medium strong heterogene-
ity [65]. From the direct analysis of the computed concentration field it is possible to get information

about the mixing process and its temporal dynamics.

We chose, as metric for mixing in confined conditions, the intensity of segregation as defined

by [112]:

_oc(x, )2 — c(x,t)2
() (1=c(x b))

which quantifies the degree of segregation between two components A and B, here our tracer of

(5.15)

concentration ¢ and the background/displaced solution of concentration 1 — ¢, the average concen-

tration of A is c(x,t) and of B is (1 —c(x,t)). I(f) varies from 1 when the segregation is total (c(x, t)

is either 1 or 0) to 0 when the system it is homogeneous. The temporal evolution of I(t) is shown
in Fig5.14 c for the Darcy scale case and in Fig. 5.15 b for the pore scale scenario. Here we observe a
first substantial difference between the two case studies: while the segregation index for the Darcy
scale decreases from its initial value down to about 0.87 after 601, for the pore scale scenario it
decays more going from its initial value, down to 0.65. This implies that the level of segregation

measured at the Darcy scale is more important that the one at the pore scale. In other words, the
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Figure 5.15: Results for the pore scale. Transport and mixing measures of a concentration field
displaced in a porous medium structure. a. Longitudinal projection of concentration field (Fig5.8 a.-
d.), for time t = 19, 21 32 and 41 7,, time increases from light to dark colours, black solid lines
are prediction from advection-dispersion equation 5.7 with D* as fitting parameter, value obtained
over all time steps is D* = 421073 mm?/s; b. Segregation intensity, time is normalized by advective
time over the average pore throat size A; c. Complementary BTC recorded in the middle of the
domain, time is normalized by the advective time over a pore volume, black solid line is prediction
of Eq. (5.14) with D* fitted on the longitudinal projection of concentration field.
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pore scale get mixed and it segregation reduced faster that in the non-confined and continuous case.
This is consistent with the observation, described in Ch.2, that diffusion within confined boundaries

happens faster and mixes more efficiently than in an unconfined and continuous medium.

4 10 102 10™ 10° 10 10° 102 10” 10°
normalized concentration ¢/cy normalized concentration gradient gc

10

Figure 5.16: Darcy scale; a. PDF of the concentration field shown in Fig.5.9 with time increasing
from light to dark colours, blue solid line indicates the c 1 scaling for low concentration values; b.
PDF of the corresponding concentration gradient field shown in Fig. 5.8, blue solid line indicates
the g1 scaling for low values as predicted by [22]; In both a. and b. the distributions are spread out
in the vertical direction for better readability.

To further analyze the mixing state of the displacing solutes, we consider their concentration PDF:
a normalized histogram of the spatial occurrence of the concentration value. Unlike other metrics,
such as longitudinal projection, spreading length, or BTC, the PDF gives credit to the entire range
of concentrations values, similarly to the segregation index. We compute the PDF of invading scalar
concentration that are shown in Fig. 5.16 a for the Darcy scale and in Fig. 5.17 a for the pore scale.
The time at which the PDF have been computed are the same as the one where the corresponding

fields have been shown above.

For the Darcy scale, at all times the concentration PDF seems to be the same, scaling as 1/¢ for low
concentration value, reaching a minimum value at about ¢ = 1/2 and increasing again for larger
concentrations. Following the lamellar description of mixing proposed by [82, 72, 22], the PDF of
the concentration field can be computed as the superposition of the PDF of all individual lamellae.
Considering an invading front (and not a pulse as in [82, 72, 22]), the stretching mechanisms as
the effect of modifying the space over which the normalized concentration c/cy varies between

0 to 1, but it does not affect the minimum or maximum values in each lamella. Therefore, the
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superposition of several lamellae that experience different stretching results in the same PDF as
the one of an individual lamella whose concentration ranges between 0 and 1 following an error-
function like shape (solution of diffusion equation for a front in unconfined conditions, as discussed

in chapter two).

10°F

. . . . .
107 102 107" 10° 107 10° 10 102
normalized concentration c¢/cy normalized concentration gradient gc

Figure 5.17: Pore scale; a. PDF of the concentration field shown in Fig.5.11 with time increasing
from light to dark colours, we note the transition of low concentration values scaling from ¢! at

early time to ¢~3/4 at later time; b. PDF of the corresponding concentration gradient field shown in

Fig. 5.12, transition of low concentration values scaling from g- ! at early time to g /# at later time

which diverge from the pore scale observations.

For the pore scale, instead, we observe a clear dynamics. The early times, about 2 7,, concentration
PDF has the same behavior discussed for the Darcy scale: it scales as 1/c for low concentrations
and it increases for values larger than ¢ = 1/2. However, as time passes the scaling of the low
concentration values decreases approaching the scaling ¢ =3/ observed at later times, above 40 1.
This means that there is less and less occurrence of low concentration values, and there is more and
more occurrence of intermediate values, as reflected in the slight increase of the PDF for value about
c = 1/2. We interpret that as another signature of the presence of no-flux boundary conditions at
the grains wall that define the system confinement. Note that we discussed the same observation in

the previous chapter, as observed with our microfluidics experiment.

We also quantified the concentration gradient magnitude, as shown in Figs. 5.8 and 5.12. We denote
with g. the concentration gradient magnitude value: its PDF is shown in Figs. 5.16 b and 5.17 b for
the Darcy and pore scale scenarios, respectively. The Darcy scale g PDF scales for low values of g,

as g- !, while at higher values we observe an exponential cut-off whose value decreases with time.
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We interpret that as the effect of local fluid stretching on individual lamellae, as observed by [63]
for a conservative pulse. The pore scale g PDF for low values of g, scales as g.! for early times
and it slows down the scaling towards g.3/* for larger times. The higher values PDF displays an

exponential cut-off whose value decreases with time, as for the Darcy’s case.

The novel lamellar model presented by [63] assumes that an invading front can be described as the
superposition of several lamellae that undergo i) stretching by the flow filed along the local flow
direction and ii) diffusion along the transverse one. In this framework, the statistical combination
of all lamellae evolves according to different regimes. At early times, all lamellae are independent
since diffusion has not had enough time to get them into contact: thus, the overall concentration
PDF is the simple average of the individual lamellae PDF that is assumed to be the one of a one-
dimensional diffusive pulse (or front, depending on the case under consideration) in a unconfined
domain. If a pulse is considered, or the gradient of a front is under investigation, the local fluid
stretching is impacting the maximum value of the lamella concentration. This can be systemati-
cally taken into account through the Ranz transform, as introduced and discussed in chapter two,
that normalizes the time of each lamella with respect to the characteristic diffusive time across the
lamella width the undergoes stretching and compression. As observed and modeled by [63], this
combined mechanisms have the effect to introduce a exponential cut-off to the concentration PDF of
a pulse, or of a front gradient; the dynamics of the cut-off value begin controlled by the stretching

statistics.

The fluid stretching for both the considered scenarios are, here, defined in terms of local front
elongation, relative to the initial separation dsg, as p = ds/dsg. We compute, at every time, the PDF
of the local elongation p,(p): in Fig. 5.18 a it is shown as dots p,(p) at times t = 3, 23, 43 7, (the
same times for which the displacing fluid elements line is shown in Fig. 5.10) with different colors
for different times (time increases from dark to light colors). This PDF is well described by the

power-law distribution, shown as solid lines:

po(p) = [o+p(t)]' 2, (5.16)

where p = 1.8 is the same parameter characterizing the grain radii (size) distribution shown in
Fig. 5.4 and p is the average elongation. Note that the model superposed to the simulated data is
not a fit. We understand this supposing that, as observed in Fig. 5.18, the fluid particles are moving

with very similar and slow velocity when they approach a grain. Behind each grain the moving par-
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ticles experience the strong and homogeneous elongation that characterizes the tail of the observed
pp- Since in the middle of a pore the fluid velocity is close to the average velocity % and close to a
grain the velocity approaches zero, the stretching intensity behind a grain is set by the grain size R
itself: along that distance the fluid particles get separated because on the one hand they are pinned,
on the other hand they get pulled at average velocity #. Thus, the grain size distribution controls

the local fluid stretching as quantified by the local fluid elements relative elongation p.

In Fig. 5.18 b it is shown as dots p,(p) at times t = 6, 22, 397, (the same times for which the
displacing fluid elements line is shown in Fig. 5.13) with different colors for different times (time
increases from dark to light colors). This PDF is well fitted by the log-normal distribution, shown

as solid lines:

log[o]—11p)?
1 _ (log[p]—pp)

= — ¢ 25 , 5.17
p,ﬂ(p) Zpapm ( )

where the two parameters 1, and 0, are fitted to minimize the difference between model Eq. (5.17)

and computed PDF p,(p).

10° 10! 102 10° 107! 10° 10 10° 10°
local strctching p = dS/dS[) local stretching p= dS/dS()

Figure 5.18: PDF of local stretching p; a. Distributions for pore scale velocity field, shown at times
corresponding to Fig. 5.13, inset shows individual fluid particles at two time step n — 1 and n as
they approach a grain surface (gray area) and the local stretching ds, the distribution is described
by Eq. 5.16; b. Distributions for Darcy scale velocity field, shown at time corresponding to Fig. 5.10,
inset shows individual fluid particles as they are advected at two times k — 1 and k, the distributions
are well described by Eq. 5.17.

This observed distribution of the elongation reflects the broad heterogeneity of velocity field which
is a consequence of the permeability field, as observed also by [63]. The global stretching is quanti-

fied by the average elongation p which is also identical to the normalized front length %(t) /X(t = 0):
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this is shown in Fig. 5.19, inset a for pore scale and b for the Darcy’s one. In both scenarios, the

front elongation dynamics scales as the power law:

p=1+[t/n]P, (5.18)

where we fit the exponent parameter § = 1.8 and p = 1.2 and the characteristic time 7. = 31, and

7. = 2.5 7, for the pore scale and Darcy’s scale, respectively.
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Figure 5.19: Temporal evolution of average elongation at pore 4. and Darcy scale b.. Both dynamic
are well described by the power law given in Eq. 5.18.

5.4 Conclusion

This chapter presents numerical simulations of flow, transport and particle tracking at both Darcy
and pore scale. Darcy scale simulations were performed to be uses as a control for the pore scale
analysis. Our large scale (Darcy) results are in agreement with previous studies [25, 72, 22] in term
of transport, concentration distribution and fluid stretching, as quantified by solute, transport par-

ticle tracking simulation and Lagrangian analysis.

Solute transport by a Stokes flow field was designed to i) validate and support the observations
collected with our novel laboratory experiments, as presented in Ch.4, and ii) study concentration
gradient fields and their distribution, which is technically very challenging from small scale labora-
tory observations. Although the porous medium geometry as well as the fluid and solute properties,
are matched in simulations and experiments, we acknowledge that two important elements make

difficult a direct and exact comparison between data sets collected with experiments and with nu-
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merical simulations.

First, the laboratory experiments were conducted in microfluidic channels, whose geometry is two-
dimensional but the actual channel is three-dimensional: thus, our observations are 2D projections
of the occurring flow and transport processes, while our simulations are strictly two dimensional.
Second, in both cases the initial condition is a front, in the simulation it can be made sharp and from
the first time step the concentration at the inlet is exactly the maximum concentration ¢y, while in
the micro-fluid chip inevitably some Taylor-dispersion effect occurs within the inlet area of the chip
(even though we payed particular attention to use a re-circulation scheme to minimize this effect),
thus, the invading front is not perfectly sharp. Beside these observations, the results obtained from
the simulations and experiments clearly indicate that solute transport is affected by the confined
condition prevailing inside the pores as quantified by i) a diffusion profile and ii) a stretching kine-
matics that are fundamentally different in the confined versus continuous description of porous

systems.
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Chapter 6

Conclusions

This thesis collects the efforts to move a step forward towards a more realistic description of mixing
phenomena by confined and heterogeneous media and take into explicit consideration the dis-
crete nature of a porous system composed by impermeable and solid grains. We consider that
the displaced concentration field of a dissolved substance through a solid matrix experiences an
ensemble of obstacles constraining flow and mass transport by imposing no-flow (i.e no slip) and
no-flux boundary conditions. Therefore, we hypothesize that the solid boundary constrain alters
both stretching mechanism and diffusion dynamics affecting the overall concentration field distri-
bution. The thesis focuses on those two main axes: i) diffusion limited mixing and ii) stretching

dynamics, under physically confined condition.
Diffusion-limited mixing under confinement

Diffusion is the key mixing mechanism in fluid systems, since it ultimately homogenizes concentra-
tions, also in the presence of stretching and compression by velocity heterogeneity. We computed
the analytical solution of the one-dimensional diffusion equation in a confined domain, character-
ized by the presence of no flux boundaries, separated by a distance A (which could represent the
size of a pore), that prevent the solute concentration from diffusing freely and explore wider areas
of space. We show how diffusion is affected by the confined nature of the considered spatial domain

and we quantify its impact on mixing.

The general solution of the diffusion equation in a confined domain, expresses the concentration
profile of a diffusive tracer as the superposition modes m (functions that do not change shape as
the system diffuses) that are periodic and fluctuating in space between the domain boundaries, and

temporally decaying exponentially fast, scaling as exp(—m?7?t). As far as the diffusing tracer does
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not experience the presence of the impermeable boundaries (e.g. right after the injection of a pulse
in the middle of the domain t < 1/(m? 7%)) the exponential decay of the modes is not substantially
changing their amplitude and a large number of modes must be taken into account to describe
the tracer concentration profile, recovering the classical solution for an un-confined case. In such
conditions space and time are coupled and the concentration profile can be expressed in terms of
the classical dimensionless coordinate for diffusion, ¢ = x/+/2Dt, making the profile self-similar
and scale independent, which is reflected in the slow, power law decay of several mixing measures.
However, as soon as a single mode m dominates the sum, space and time are decoupled and the
exponential decay of the solution defines a characteristic time scale (1/(m?7?)), as reflected by the

exponential decay of the mixing measures considered.

Physically, in a confined space the no-flux boundary condition V¢(0,t) = Vc(A,t) = 0 imposes a flat
profile at the domain edges leading to an overall steeper gradient and higher mass flux compared to
the unconfined case where mass can freely diffuse exploring wide areas of space, slowly dissipating
the concentration gradients. Therefore local and global measures of mixing display significantly
different dynamics. The resulting exponential time scaling of mixing measures in confined condi-
tions leads to the definition of a new characteristic time scale for diffusion, which depends on the
initial condition and it is fixed by the leading mode (e.g. m = 1 for a front and m = 2 for a pulse),
A?/(m? D %), which is much shorter (one order of magnitude shorter) than the characteristic A2/ D
defined to re-scale the diffusion equation. Our observations show that the homogenization dynam-

ics (mixing) is significantly faster under confinement, i.e. no-flux boundary conditions.

Novel method to measure the diffusion coefficient

Knowing the value of the diffusion coefficient D is crucial to describe the fate of a diffusing sub-
stance and all the diffusion-related phenomena, like mixing or reactions. For spherical object of
radius r the value of the diffusion coefficient can be theoretically derived from the well-known
Stokes-Einstein relation [53] which couples the kinetic energy associated to the thermal agitation
of particles and the viscous drag the particle experiences while moving within a viscous fluid. For
objects of approximately spherical shape (e.g. many type of molecules, colloids or bacteria) for
which the radius is known, several methods have been developed in the past decades to measure
the value of D based either on the microscopic (individual motion) or macroscopic (concentration

distribution) properties of the process.
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However, these methods are either based on indirect measurements, such as dynamic light scatter-
ing (DLS), or requires prior knowledge on either the host fluid or the molecule of interest, such as
Taylor dispersion based measurements. To overcome this, we developed a novel method to measure
the value of the diffusion coefficient based on the direct observation of the substance mass-transfer.
Within a flow cell of simple geometry, a sharp front is established between the tracer of interest and
a blank solution; the dissolved or suspended substance diffuses transversly to the cell main flow
direction and the concentration profile of the front is solution of diffusion equation. The value of D
is determined by fitting that solution, that depends on the value of D (to be determined) and the

initial condition (known), to the measured profile.

Mixing by porous media

To investigate confined-limited mixing of displacing front within an heterogeneous porous system,
we developed a novel experimental set-up to visualize and measure the concentration field at the
pore scale, also capturing tens of average pores along the longitudinal and transverse direction
to investigate the role of heterogeneity. The images obtained from time-lapse video-microscopy
demonstrated the persisting non-well mixed conditions prevailing within pore throats, even at rel-
atively low Pe number (here Pe = 15) and for all observation times. Considering the distribution
of concentration values through their PDF, we observed that the distribution deviates from the one

predicted by a lamellar model developed for a Darcy scale, continuous, system.

As already demonstrated at Darcy scale, where the individual pores are not resolved, we observe
that macroscopic measurements of displacement and spreading such as longitudinal projection of
concentration field and early times BTC can be well predicted by the classical advection dispersion
models. Observations of transport dynamics for longer times, i.e. the BTC for times much larger
than the pore volume time scale, are expected to deviate from this classical advection-dispersion
framework, since small concentrations fluctuations, associated to flow heterogeneity, would become

important (as we verified by means of numerical simulations).

Considering as diagnostic quantity for mixing dynamics the concentration PDF, our measurements
show that at pore scale, the presence of solid and impermeable boundaries, the grains, triggers a
different mixing dynamics that affect the concentration distribution statistics which deviates from
what it would be expected for an invading sharp front within a continuous non-confined domain:

from scaling as c ! to ¢34, this key observation indicates that the processes of diffusion, stretch-
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ing and merging of lamellas are controlled by fundamentally different kinematics associated to the

confinement conditions.

To go even further and assess the impact of the host medium heterogeneity (i.e. the pore throats
and grain size distribution), we used two-dimensional flow and transport numerical simulations and
particle tracking within the same porous geometry as the one used in our laboratory experiment. In
particular, particle tracking simulations allowed us to analyze the Lagrangian stretching and front
elongation kinematics of the invading concentration front. We also performed the same numerical
investigation (flow, solute transport, particle tracking and Lagrangian statistics) on a Darcy scale
field characterized by a similar heterogneity (i.e. broad range of velocity and same ratio between

the heterogeneity correlation length A and the medium size L).

The simulations showed that, while at the Darcy scale the transported solute concentration PDF
scales as ¢! at all times (as it would be predicted by the lamellar model), at pore scale our exper-
imental observations were confirmed: the concentration PDF only initially scales as ¢! to dynam-

ically change scaling towards c~3/4. Similar results are obtained for the concentration gradients PDF.

Moreover, the stretching statistics of the fully resolved, and confined, porous system resulted to be
controlled by the grain size distribution. We understand this observing that the fluid particles are
moving with very similar and slow velocity when they approach a grain. Behind it the moving par-
ticles experience the strong and homogeneous elongation that characterizes the tail of the observed
statistics. Since in the middle of a pore the fluid velocity is close to the average velocity # and close
to a grain the velocity approaches zero, the stretching intensity behind a grain is set by the grain
size R itself: along that distance the fluid particles get separated because on the one hand they are
pinned, on the other hand they get pulled at average velocity #. This is a fundamentally different
stretching mechanism with respect to Darcy scale, continuous fields, there fluid elements are not

pinned since their velocity can be very small, but not zero.

Implication for mixing at larger scale

In the context of reactive transport there is an important challenge in predicting where, and how
quickly, biological or chemical reactions will take place; depending on the physical heterogeneity of

the host medium structure and the complex flow pattern it triggers, as well as on the wide temporal

scale over which reactions happen [113]. In order to react, chemical species must be brought in the
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vicinity of each other by mixing, therefore as already argued by several studies [77, 25, 79], careful
description of mixing mechanisms at the scale at which reactions actually occur (for porous medium
it is the pore-scale) is necessary to successfully model mixing-driven reactions. It is in this frame-
work that the results presented in this work could contribute to the development of mixing models
that reflects the confining nature of porous media. We showed that diffusion, which ultimately mix

solutes, is affected by confinement in its dynamics and time scale.

The authors of a recent work [114] carried a study on landfill leachate, considering a constant (steady
state) flux of leachate input in the subsurface: they aim to monitor the degradation of a wide range
of chemical species considered as pollutant for groundwater resources such as organic or chlori-
nated compounds. They built a conceptual model predicting the vertical concentration profile of
each species of interest for different phase of the degradation process. The transport and reaction
model used in this context is based on bulk quantities of soil properties and consider averaged
concentration values. It would be relevant to compare and calibrate such a model with one consid-
ering a distribution of soil properties and thus concentration values including mixing mechanisms
observed in confined conditions. How degradation time scale is affected and how wide is the range

of actual concentrations, compared to the predicted average, is still an open question.

Another extensively studied mixing limited reaction phenomenon in porous media is the trans-
formation of carbon (C) and nitrate (N) by microorganisms in the hyporehic zone (where stream
water and groundwater mix). In [115] the authors developed a model based on one-dimensional
advection-dispersion reaction equation in order to asses the role played by different downstream
sections of the stream as a source or a sink of nitrate, whose parameters control the biochemical pro-
cesses involving C and N. The model, then, provides concentration value of different species along
the stream allowing to asses which section acts as a sink or a source of nitrate. The reaction rates
considered are measured in well-mixed conditions, implying that all microorganisms are exposed
to the same concentration of C or N. However, in a more realistic scenario concentration gradients
are present at the sub pore-scale modifying the dynamics and spatial distribution of biomass which
could ultimately modify both reaction rates values and spatial pattern of product distribution. The
hyporehic zone is a typical confined environment where the solid matrix hosts biomass growth
whose development is intrinsically linked to the presence of local concentration gradients. In order
to approach an accurate prediction of transport and reaction dynamics by microorganisms it is es-
sential to describe the fundamental mechanisms that drive mixing at the microscale not only taking

into account the heterogeneity of the flow field but also the confined nature of the host medium
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structure.

In both above mentioned studies [114, 115] reactions take place at the interface between two fluid
bodies (contaminant plume and groundwater or ground and stream water) containing different
solutes or biomass concentration which mix along the direction transverse to the main flow. Nu-
merous studies [56, 116, 71, 117, 118] tackled this problem as it is a paradigmatic configuration of
many natural or engineering phenomena. The approach is often to determine a transverse disper-
sion coefficient based on concentration profiles from a conservative tracer simulation [116] or by
considering vertically (in the direction transverse to the flow) integrated concentration profile of
reactive transport simulation at the pore scale [56]. In both cases pores are considered well-mixed
and the confined nature of the host matrix is neglected. In [71] the authors study transverse mix-
ing at the pore-scale using a homogeneous distribution of solid obstacles with an ellipse shape.
They showed that the orientation of the ellipse (perpendicular or aligned with the flow) impacts the
amount of product formed. In particular more product was formed in the configuration where the
solid obstacles are perpendicular to the flow. One of their major result is that mixing is enhanced
due to the flow focusing taking place as the streamlines are squeezed in the narrower pores found
in the transverse direction, which is not the case when the solid obstacles are positioned aligned
with the flow, leading to a higher product formation. They argue that the controlling parameter for
this mechanism to occur is the alternation of flow focusing and expansion as fluid is transported
through narrow and large pores. This is a very interesting scenario in which confinement could play
a role, in this case the mixing time is defined by the diffusive time between two streamlines [113] a
distance that decreases as the streamlines are squeezed. However, our results showed that within a
pore the diffusive mixing time is different if we consider no-flux boundary conditions. Integrating
the solution of confined diffusion in such a model could lead to a more accurate description of

transverse mixing.

As illustrated by the studies presented above, the models currently used to describe reactive trans-
port are based on the assumption that the concentration within pores are well-mixed and they do
not consider the presence of solid boundaries. Within the framework of the lamellar mixing model
described in Ch.1, small scale flow heterogeneity is taken into consideration and, thus, non well-
mixed conditions. However, the consequences of the presence of the solid grains and the no-flux
and no-flow boundary condition imposed on mass flux and fluid flow were up to now unexplored.
With the present work we propose a novel perspective to approach the mixing problem, moving

a step forward towards a more realistic description of solute transport, mixing and reaction. In
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particular, we believe that these results will impact the development of novel reactive transport
models, where the finite and limited size of pores affect the prediction of reaction rates, from

column to field scale.

Perspectives

We demonstrated the role played by confinement i) on diffusion-limited mixing and ii) stretching
dynamics observing iii) their impact on the mixing dynamics. An important next step will be to
assess, beside these fundamental mechanisms, the process of lamellas coalescence within the pore
space. Then, it will be possible to further extend the lamellar model to porous media explicitly

taking into account their discrete nature.

In the part of this thesis that considers also advection with microfluidics experiments, we have not
discussed any mixing diagnostic quantity based on concentration gradients, such as their PDF or the
scalar dissipation rate. This is due to the technical difficulties to distinguish the physically mean-
ingful concentration fluctuations from the electronic noise of the detection camera, that, even for
the forefront technology, cannot be neglected. As a perspective, it would be very useful to combine
numerical methods to smooth the acquired data, to remove the contribution of the experimental

noise while respecting the role played by the walls of the solid grains.

PhD thesis - Mayumi Hamada



90

PhD thesis - Mayumi Hamada



Bibliography

[1] ]J. Grotzinger and T. Jordan. Understanding Earth. W. H. Freeman and compagny, New York,

(2]

(3]

[4]

[5]

(6]

[7]

[10]

[11]

[12]

2010.

J. Bear. Dynamics of Fluids in Porous Media. Elsevier, New York, 1972.
L. W. Mays. Water resources engineering. Wiley, 2011.

R. A. Freeze and J. A. Cherry. Groundwater. Prentice Hall, 1979.

G. M. Masters and W. P. Ela. Introduction to environmental engineering and science. Pearson

international edition, 2008.

F. Casini and G. M. B. Viggiani. Breakage of an artificial crushable material under loading.

Granular Matter, 15:661-673, 2013.

P. de Anna, T. Le Borgne, M. Dentz, A. Tartakovsky, D. Bolster, and P. Davy. Flow intermit-
tency, dispersion and correlated continuous time random walks in porous media. Phys. Rev.

Lett., 101:184502, 2013.

W. P. Ball, C. H. Buehler, T. C. Harmon, D. M. Mackay, and P. V. Roberts. Characterization of
a sandy aquifer material at the grain scale. J. Contam. Hydrol., 5(3):253-295, 1990.

M. B. Hay, D. L. Stoliker, J. A. Davis, and J. M. Zachara. Characterization of the intragranular
water regime within subsurface sediments: Pore volume, surface area, and mass transfer

limitations. Wat. Resour. Res., 47:-W10531, 2011.

W. W. Wood, Kraemer T. F,, and P. P. Hearn Jr. Intragranular diffusion: An important mecha-

nism influencing solute transport in clastic aquifers? Science, 247:1569-1572, 1990.
J. Jimenez. Oceanic turbulence at millimeter scales. Sci. Mar., 61, 1997.
M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pent-

land. Pore-scale imaging and modelling. Adv. Water Resour., 51:97-216, 2013.

91



BIBLIOGRAPHY 92

[13] R. Rusconi, M. Garren, and R. Stocker. Microfluidics expanding the frontiers of microbial

ecology. Annu. Rev. of Biophys., in 43:65, 2014.

[14] B. Zhao, C. W. MacMinn, and R. Juanes. Wettability control on multiphase flow in patterned
microfluidics. Proc. Natl. Acad. Sci, 113:10251-10256, 2016.

[15] P. de Anna, Y. Yawata, R. Stocker, and R. Juanes. Chemotaxis and front chemical gradients

shape microbial dispersion in porous media flows. Nat. Phys., 2020.

[16] M. Icardi, G. Boccardo, D. L. Marchisio, T. Tosco, and R. Sethi. Pore-scale simulation of fluid
flow and solute dispersion in three-dimensional porous media. Phys. Rev. E, 90:013032, 2014.

[17] P.K. Kang, P. de Anna, ]. P. Nunes, B. Bijeljic, M. J. Blunt, and R. Juanes. Pore-scale intermittent
velocity structure underpinning anomalous transport through 3-D porous media. Geophys.

Res. Lett., 41(17):6184-6190, 2014.

[18] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz. Intermittent lagrangian velocities and

accelerations in three-dimensional porous medium flow. Phys. Rev. E, 92:013015, 2015.

[19] W. P. Ball, C. H. Buehler, T. C. Harmon, D. M. Mackay, and P. V. Roberts. Lagrangian analysis
of nonreactive pollutant dispersion in porous media by means of the particle image velocime-

try technique. Wat. Resour. Res., 32:2329-2343, 1996.

[20] S. S. Datta, H. Chiang, T. S. Ramakrishnan, and D. A. Weitz. Spatial fluctuations of fluid
velocities in flow through a three-dimensional porous medium. Phys. Rev. Lett., 111:064501,

2013.

[21] P. de Anna, B. Quaife, G. Biros, and R. Juanes. Prediction of velocity distribution from pore

structure in simple porous media. Phys. Rev. Fluids, 2:124103, 2017.

[22] T. Le Borgne, M. Dentz, and E. Villermaux. The lamellar description of mixing in porous

media. J. Fluid Mech., 770:458-498, 2015.

[23] C. Dorn, N. Linde, T. Le Borgne, O. Bour, and M Klepikova. Inferring transport characteristics
in a fractured rock aquifer by combining single-hole gpr reflection monitoring and tracer test

data. Water Resour. Res., 48:W11521, 2012.

[24] D. Jougnot, J. Jiménez-Martinez, R. Legendre, T. Le Borgne, Y. Méheust, and N. Linde. Im-
pact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and
partially saturated porous media: insights from geoelectrical milli-fluidic experiments. Adv.

Water Resour., 113:295-309, 2012.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 93

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

C. M. Gramling, C. F. Harvey, and L. C. Meigs. Reactive transport in porous media: A
comparison of model prediction with laboratory visualization. Env. Sci. and Tech., 36(11),

2002.

F. Miele, P. de Anna, and M. Dentz. Stochastic model for filtration by porous materials. Phys.
Rev. Fluids, 4:094101, 2019.

M. E. McClain, E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart,
J. W. Harvey, C. A. Johnston, E. Mayorga, W.H. McDowell, and G. Pinay. Biogeochemical

hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems,

6:301-312, 2003.

D. Scheidweiler, F. Miele, H. Peter, T. J. Battin, and P. de Anna. Trait-specific dispersal of
bacteria in heterogeneous porous environments: from pore to porous medium scale. J. R. Soc.

Interface., 17:20200046, 2020.

D. Scheidweiler, H. Peter, P. Pramateftaki, P de Anna, and T. J. Battin. Unraveling the biophysi-
cal underpinnings to the success of multispecies biofilms in porous environments. 13(7):1700-

1710, 2019.

L. Cueto-Felgueroso, M. J. Suarez-Navarro, X. Fu, and R. Juanes. Numerical simulation of
unstable preferential flow during water infiltration into heterogeneous dry soil. Water, 12(3),

2020.

D.R. Nielsen, M.T. van Genuchten, and J.W. Biggar. Water flow and solute transport processes

in the unsaturated zone. Water Resour. Res., 22:895-108S, 1986.

L. Cueto-Felgueroso, M. J. Suarez-Navarro, X. Fu, and R. Juanes. Interplay between fingering
instabilities and initial soil moisture in solute transport through the vadose zone. Water, 12(3),

2020.

B. Jha, L. Cueto-Felgueroso, and Juanes R. Fluid mixing from viscous fingering. Phys. Rev.

Lett., 106:194502, 2011.

B. X. Primkulov, A. A. Pahlavan, X. Fu, B. Zhao, C. W. MacMinn, and R. Juanes. Signatures of
fluid fluid displacement in porous media: wettability, patterns and pressures. |. Fluid Mech.,

875:R4, 2019.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 94

[35] J. Jimenez-Martinez, P. de Anna, H. Tabuteau, R. Turuban, T. Le Borgne, and Y. Méheust.
Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and im-

plications for chemical reactions. Geophys. Res. Lett., 42:5316-5324, 2015.

[36] X. Xiaojing Fua, J. Jimenez-Martinez, T. P. Nguyend, J. W. Careyd, H. Viswanathand, L. Cueto-
Felguerosof, and R. Juanes. Crustal fingering facilitates free-gas methane migration through

the hydrate stability zone. PNAS, 117:31660-31664, 2020.

[37] C. W. MacMinn and R. Juanes. Buoyant currents arrested by convective dissolution. Geophys.

Res. Lett., 40:2017-2022, 2013.

[38] C. W. MacMinn, M. L. Szulczewski, and R. Juanes. CO2 migration in saline aquifers. Part 2.
Capillary and solubility trapping. . Fluid Mech., 688:321-351, 2011.

[39] H. Darcy. Les fontaines publiques de la ville de Dijon: exposition et application des principes a suivre

et des formules a employer dans les questions de distribution d’eau. Victor Dalmont, Paris, 1856.

[40] L. A. Dillard and M. Blunt. Development of a pore network simulation model to study non

aqueous phase liquid dissolution. Wat. Resour. Res., 36:439-454, 2000.

[41] A. Shakas, N. Linde, T. Le Borgne, and O. Bour. Probabilistic inference of fracture-scale flow
paths and aperture distribution from hydrogeophysically-monitored tracer tests. J. Hydrol.,
567:305-319, 2018.

[42] O. A. Cirpka, A Olsson, Q. Ju, A. Md. Ragman, and P. Grathwohl. Determination of transverse
dispersion coefficients from reactive plume lengths. Ground water, 44(2):212-221, 2006.

[43] PK. Kang, T. LeBorgne, M. Dentz, O. Bour, and R. Juanes. Impact of velocity correlation and
distribution on transport in fractured media: Field evidence and theoretical model. Water

Resour. Res., 51:940-959, 2014.

[44] M. Flury, H. Flithler, W. A. Jury, and J. Leuenberger. Susceptibility of soils to preferential flow
of water: a field study. Water Resour. Res., 30:1945-1954, 1994.

[45] LE. Forrer, A. Papritz, R. Kasteel, H. Fliihler, and D. Luca. Quantifying dye tracers in soil
profiles by image processing. Eur. J. Soil Sci., 51:313-322, 2000.

[46] P. W. van der Pas. The discovery of the brownian motion. Scientiarum Historia, 13:27-35, 1971.

[47] A. Einstein. Uber die von dermolekularkinetischen Theorie der Warme geforderte Bewegung

von in ruhenden Fliissigkeiten suspendierten Teilchen. Ann. Phys., 322:549-560, 1905.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 95

[48] M. von Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbewegung und

der Suspensionen. Ann. Phys., 21:757-780, 1906.

[49] W. Sutherland. A dynamical theory of diffusion for non-electrolytes and the molecular mass

of albumin. Phil. Mag. S., 9:781-785, 1905.
[50] H. C. Berg. Random walks in biology. Princeton University Press, 1993.

[51] N.G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam, third
edition, 2007.

[52] D. M. Tartakovsky and M. Dentz. Diffusion in porous media: Phenomena and mechanisms.

Transp. Porous Media, 130:105-127, 2019.
[53] Frederik Reif. Fundamentals of statistical and thermal physics. Mcgraw-Hill Compagny, 1985.
[54] S. B. Pope. Turbulent Flows. Cambridge University Press, New York, 2000.

[55] O. A. Cirpka, E. O. Frind, and R. Helmig. Numerical simulation of biodegradation controlled
by transverse mixing. |. Contam. Hydrol., 40:159-182, 1999.

[56] C. Knutson, A. Valocchi, and C. Werth. Comparison of continuum and pore-scale models of
nutrient biodegradation under transverse mixing conditions. Adv. Water Resour, 30:1421-1431,

2007.

[57] A. Boisson, P. de Anna, O. Bour, T. Le Borgne, T. Labasque, and L. Aquilina. Reaction chain
modeling of denitrification reactions during a push-pull test. . Contaminant Hydrol., 148:1-11,

2013.

[58] P. G. Cook, D. K. Solomon, W. E. Sanford, E. Busenberg, L. N. Plummer, and R. J. Poreda. In-
ferring shallow groundwater flow in saprolite and fractured rock using environmental tracers.

Wat. Resour. Res., 32(6):1501-1509, 1996.

[59] G. S. Weissmann, Y. Zhang, E. M. LaBolle, and G. E. Fogg. Dispersion of groundwater age in
an alluvial aquifer system. Wat. Resour. Res., 38(10):1198, 2002.

[60] B. B. Dykaar and P. K. Kitanidis. Macrotransport of a biologically reacting solute through
porous media. Wat. Resour. Res., 32(2):307-320, 1996.

[61] J.M. Ottino. The kinematics of mixing: stretching, chaos, and transport. Cambridge University
Press, Cambridge, UK, 1989.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 96

[62] ]J. Duplat, C. Innocenti, and E. Villermaux. A nonsequential turbulent mixing process. Physics

of Fluids, 22(3):035104, 2010.

[63] T. Le Borgne, M. Dentz, and E. Villermaux. The lamellar description of mixing in porous

media. J. Fluid Mech., 770:458-498, 2014.
[64] Peter K. Kitanidis. The concept of the Dilution Index. Water Resour. Res., 30(7):2011, 1994.

[65] M. Dentz, T. Le Borgne, A. Englert, and B. Bijeljic. Mixing, spreading and reaction in hetero-
8 & jel) &, Sp )
geneous media: a brief review. |. Contaminant Hydrol., 120-121:1-17, 2011.

[66] ]J. Duplat and E. Villermaux. Mixing by random stirring in confined mixtures. J. Fluid Mech.,
617:51-86, 2008.

[67] G. Taylor. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy.

Soc. A, 219, 1953.

[68] R. Aris. On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. A,
253:67-77, 1956.

[69] L. W. Gelhar, C. W. Kenneth, and R. Rehfeldt. A critical review of data on field-scale dispersion
in aquifers. Wat. Res. Resour., 28:1955-1974, 1992.

[70] V. Kapoor, L. W. Gelhar, and F. Miralles-Wilhelm. Bimolecular second-order reactions in
spatially varying flows: Segregation induced scale-dependent transformation rates. Water

Resour. Res., 33(4):527, 1997.

[71] T. W. Willingham, C. J. Werth, and A. J. Valocchi. Evaluation of the effects of porous media
structure on mixing-controlled reactions using pore-scale modeling and micromodel experi-

ments. Environ. Sci. Technol., 42(9):3185-3193, 2008.

[72] T. Le Borgne, M. Dentz, and E. Villermaux. Stretching, coalescence and mixing in porous

media. Phys. Rev. Lett., 110:204501, 2013.

[73] T. Le Borgne, D. Bolster, M. Dentz, P. de Anna, and A. Tartakovsky. Effective pore-scale
dispersion upscaling with a correlated continuous time random walk approach. Water Resour.

Res., 47:W12538, 2011.

[74] T. Tel, A. Demoura, C. Grebogi, and G. Karolyi. Chemical and biological activity in open

flows: A dynamical system approach.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 97

[75] P. M. Oates. Upscaling reactive transport in porous media: laboratory visualization and stochastic

models. PhD thesis, Massachusetts institute of technology, 2007.

[76] A. M. Tartakovsky, G. D. Tartakovsky, and T. D. Scheibe. Effects of incomplete mixing on

multicomponent reactive transport. Adv. Water Resour., 32(11), 2009.

[77] D. S. Raje and V. Kapoor. Experimental study of bimolecular reaction kinetics in porous

media. Environ. Sci. Technol., 34:1234-1239, 2000.

[78] P. De Anna, J. Jimenez-Martinez, H. Tabuteau, R. Turuban, T. Le Borgne, M. Derrien, and
Y. Méheust. Mixing and reaction kinetics in poroous media: an experimental pore scale

quantification. Environ. Sci. Technol., 48:508-516, 2014.

[79] P. De Anna, J. Jimenez-Martinez, H. Tabuteau, R. Turuban, T. Le Borgne, M. Derrien, and
Y. Méheust. Mixing and reaction kinetics in poroous media: an experimental pore scale

quantification. Environ. Sci. Technol., 48(13):508-516, 2014.

[80] W. Ranz. Applications of a stretch model to mixing, diffusion, and reaction in laminar and

turbulent flows. AICKE ., 25:41-47, 1979.

[81] P. Meunier and E. Villermaux. The diffusive strip method for scalar mixing in two dimensions.

J. Fluid. Mech, 662:134-172, 2010.
[82] E. Villermaux. Mixing by porous media. C. R. Mechaniques, 340:933-943, 2012.

[83] T. Le Borgne, M. Dentz, D. Bolster, J. Carrera, J-R de Dreuzy, and P. Davy. Non-fickian mixing:
Temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. in

Water Resour., 33(12):1468-1475, 2010.
[84] E. Villermaux. Mixing versus stiring. Annu. Rev. Fluid Mech., 51:245-273, 2019.

[85] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Martinus Nijhoff Publishers,
1983.

[86] E. Villermaux and J. Duplat. Mixing is an aggregation process. C. R. Mecaniques, 331, 2003.

[87] J. J. Hidalgo, L. Cueto-Felgueroso, and R. Juanes. Scaling of convective mixing in porous

media. Phys. Rev. Lett., 109:264503, 2012.

[88] B. Jha, L. Cueto-Felgueroso, and R. Juanes. Synergetic fluid mixing from viscous fingering

and alternating injection. Phys. Rev. Lett., 111:144501, 2013.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 98

[89] S. Whitaker. The Method of Volume Averaging. Springer, New York, 1999.

[90] E. Villermaux and C. Innocenti. On the geometry of turbulent mixing. J. Fluid Mech, 393:123—
147, 1999.

[91] A. Fick. Uber Diffusion. Ann. Phys, 170:59-86, 1855.

[92] ]. Stetefeld, S. A. McKenna, and T. R. Patel. Dynamic light scattering: a practical guide and
applications in biomedical sciences. Phys. Rev. Lett., 8(4):409—-427, 2016.

[93] A. Alizahed, C.N. De Castro, and W. Wakeham. The theory of the taylor dispersion technique
for liquid diffusivity measurements. Int. |. Thermophys., 1:243-284, 1980.

[94] A. C. Ouano. Diffusion in liquid systems. I. A simple and fast method of measuring diffusion

constants. Ind. Eng. Chem. Fundam., 11(2):268-271, 1972.

[95] J. H. Northrop and M. L. Anson. A method for the determination of diffusion constants
and the calculation of the radius and weight of the hemoglobin molecule. ]. Gen. Physiol.,

12(543):543-554, 1928.

[96] A.R Gordon. The diaphragm cell method of measuring diffusion. Ann. N.Y Acad. Sci., 46:285—
308, 1945.

[97] ]J. Lozar, C. Laguerie, and ].P Couderc. Diffusivité de 1’acide benzoique dans 1’eau: influence

de la température. The canadian journal of chemical engineering, 53:200-203, 1975.
[98] Bouguer Pierre. Essai d’optique sur la gradation de la lumiére. Claude Jombert, Paris, 1729.

[99] J. ]. Kipling and R. B. Wilson. Absorption of methylene blue in the determination of surface
areas. J. appl. Chem, 10:109-113, 1960.

[100] P. T. Hang and G. W. Brindley. Methylene blue absorption by clay minerals. determination of
surface areas and cation exchange capacities. Clay and Clay Minerals, 18:203-212, 1970.

[101] R. K. Taylor. Cation exchange in clays and mudrocks by methylene blue. |. Chem. tech. Biotech-
nol., 35A:195-207, 1985.

[102] M. Hamada, P. de Anna, and L. Cueto-Felgueroso. Diffusion limited mixing in confined

media. Phys. Rev. Fluids, 5:124502, 2020.

[103] J. Heyman, D. R. Lester, R. Turuban, Y. Méheust, and T. Le Borgne. Stretching and folding
sustain microscale chemical gradients in porous media. PNAS, 111(24):13359-13365, 2020.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 99

[104] D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides. Microfabrication meets microbiology.
Nature Rev. Microbiol., 5:208-218, 2007.

[105] J. R. Taylor. An Introduction to Error Analysis. University Science Books, 1982.
[106] F. Miele. Filtration by heterogeneous porous materials. PhD thesis, University of Lausanne, 2020.

[107] ]J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Comput.

Geom., 22(1):21-74, 2002.
[108] M. ]. Blunt et al. Pore-scale imaging and modelling. Adv. Water Resour., 51:97-216, 2013.

[109] M. J. Blunt. Flow in porous media—pore network models and multiphase flow. Curr. Opin.

Colloid Interface Sci., 6:197-207, 2001.

[110] M Dentz, M. Icardi, and J. J. Hidalgo. Mechanism of dispersion in a porous medium. |. Fluid
Mech., 841:851-882, 2018.

[111] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Martinus Nijhoff Publishers,
1983.

[112] P.V. Danckwerts. The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci.,

8:93-102, 1958.

[113] A.]. Valocchi, D. Bolster, and C. J. Werth. Mixing-limited reactions in porous media. Transp
Porous Media, 130:157-182, 2018.

[114] P. L. Bjerg, N. Tuxen, L. A. Reitzel, H. Albrechtsen, and P. Kjeldsen. Natural attenuation
processes in landfill leachate plumes at three danish sites. Groundwater, 49(5):688-705, 2011.

[115] ]J. P. Zarnetske, R. Haggerty, S. M. Wondzell, V. A. Bokil, and R. Gonzélez-Pinzén. Coupled
transport and reaction kinetics control the nitrate source-sink function of hyporheic zones.

Water Resour. Res., 48:W11508, 2012.

[116] R. C. Ram C. Acharya, A.J. Valocchi, C. J. Werth, and T. W. Willingham. Pore-scale simulation
of dispersion and reaction along a transverse mixing zone in two-dimensional porous media.

Water Resour. Res., 43:W10435, 2007.

[117] M. Roll, C. Eberhardt, G. Chiogna, O. A. Cirpka, and P. Grathwohl. Enhancement of dilution
and transverse reactive mixing in porous media: Experiments and model-based interpretation.

J. Contam. Hydrol., 110:130-142, 2009.

PhD thesis - Mayumi Hamada



BIBLIOGRAPHY 100

[118] T. Willingham, C. Zhang, C. J. Werth, A. J. Valocchi, M. Oostrom, and T. W. Wietsma. Using
dispersivity values to quantify the effects of pore-scale flow focusing on enhanced reaction

along a transverse mixing zone. Adv. Water Resour., 33:525-535, 2010.

PhD thesis - Mayumi Hamada



