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Nomenclature

General

Cr Cluster of r bacteria

cr Concentration of clusters of r bacteria

M Mass of bacteria

nc Maximum cluster’s size

r Number of bacteria constituting an aggregate, or volume

Becker-Döring model

ar Aggregation rate or kernel between clusters Cr and C1

br Fragmentation rate or kernel of a cluster Cr+1

Jr Net mass flux from Cr and C1 to Cr+1

Smoluchowski model

ar,s Aggregation rate or kernel between clusters Cr and Cs

tg Gelation time

Microbial growth

Ar Aggregation terms

K Growth rate of bacteria

M∞ Carrying capacity of a bacterial system

Kinetics of Mn

cM Concentration of manganese (Mn)

Km Reaction rate constant of oxidation of manganese (Mn)
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(a) (b)

Figure 1: (a) Picture made with an electronic microscope (curtesy of Prof. Jasquelin Pena) showing
two bacteria, P. Putida, and precipitated Mn (black filaments). (b) The oxidation of manganese (Mn)
transforms Mn with an oxidation number equal to II in Mn(IV). This reaction can be catalysed by
bacteria (blue circles). In case of separated bacteria (monomers) the kinetics is known, described as a
first order reaction. Nevertheless in case of bacteria aggregated in clusters, the latter kinetics remains
to be determined.

1 Introduction

Dissolved minerals under certain conditions can precipitate into solid particles, a process called min-
eralisation. In some situation the kinetics of this process can be boosted by orders of magnitude by
the presence of microorganisms that act as enzymes to catalyse the reaction. The case of enzymatic
mineralisation of manganese (Mn) has received attention due to the role played by the extremely reac-
tive Mn oxides in natural phenomena, including several elements cycle. The enzymatic mineralisation
of suspended Mn by microbial activity, involves entities of different size: suspended Mn molecules
(molecule scale) and microbes (micron scale and above). The latter also aggregate to shape microbial
clusters that diffuse, sediment, collide with other clusters and react with dissolved Mn (see Fig. 1).
This complex phenomenon is typically described in terms of first order kinetics that, while providing a
simple framework depending on bulk concentrations and chemical conditions (like pH), does not take
into consideration the microscopic process of microbial aggregation that probably control the overall
reaction kinetics.

This research project aims at developing a novel stochastic model that takes into account the dy-
namics associated to the aggregates formation and the microbial growth of bacteria, to finally explain
its impact on the overall reaction kinetics. For that purpose we start from results of an experiment
measuring different bacterial clusters sizes. We aim at modelling the obtained experimental size dis-
tribution by using suitable aggregation models. The proposed models, consist in a set of chemical
equations that describe

• The interaction between microbes and microbial aggregates with dissolved Mn.

• The microbes interactions to build microbial aggregates.

The system state will be described in terms of the population of all involved species and its dynamics in
terms of transitions associated to the defined mechanisms. Thus, the system state will be distributed as
the solution of a system of differential equations that is set in terms of the reaction kinetics associated
to the Mn microbes interactions and the microbial aggregates formation.

There are many approaches to model the phenomenon of aggregation between particles. Here we
will use the deterministic (mean-field) and discrete models of Smoluchowski and Becker-Döring [1].

We model the aggregation between two clusters of size r and s, which leads to a cluster of size r+s,
and also the fragmentation of this cluster into two smaller ones (see eq. (1) and Fig. 2).

Cr + Cs 
 Cr+s (1)

1
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Figure 2: Diagram showing aggregation and fragmentation processes. The aggregation process between
two particles of respective sizes r and s, corresponding to the number of monomers constituting of the
cluster, leads to a cluster of size r + s. Inversely the fragmentation process splits the whole cluster of
size r + s into two smaller clusters r and s.

(a) (b)

Figure 3: Experiment highlighting bacterial clustering. (a) Experimental setup: a solution of separated
bacteria (monomers) is injected into the channel at a time t = 0. Bacteria stay in suspension. After
16 hours pictures are made with an optical microscope, which has access to a limited field of view. (b)
Resulting picture. White spots correspond to bacteria or clusters of bacteria.

Firstly we present the obtained experimental results that we will to model. Secondly we will discuss
a first mathematical model of aggregation, the Becker-Döring equations. Then, we will consider a
second model that takes into consideration more physical processes, resulting complicated to solve:
the Smoluchowski equations. Since the considered particles are bacteria, we complete the model by
adding the phenomenon of microbial growth. Finally we use a suitable coagulation model to study the
impact on the kinetics of the mineralisation of Mn mediated by microbial aggregates.

2 Experimental distribution of bacterial clusters sizes

2.1 Setup and measurements

The following experiment was carried out by Filippo Miele at the University of Lausanne, its aim was
to observe bacterial aggregates of different sizes. Pseudomonas putida sp. from a frozen stock were
grown in LB medium at 29 degrees for 18 hours, in an orbital shaker at 150 rpm. Then, 10 samples
of 100 uL were injected into 10 microfluidic straight channels (see Fig. 3). Observations were made
with an optical microscope in phase contrast optical configuration, and a picture for each sample was
acquired.

2
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Figure 4: Averaged concentrations distribution of clusters areas c(A) (10 measurements) of bacterial
clusters areas A, plotted with a log-log scale (a) or a semi-log scale (b) in order to discriminate a
potential power or exponential law. The black dashed line is a fit which corresponds to a power law
A−αA , with αA = 2.55.

2.2 Analysis of the resulting pictures: obtention of a clusters sizes distribution

Starting from these pictures, a script detects and measures the area A of every cluster. The result is a
list of areas values. We then compute the probability density function (PDF) p(A) of these data, which
corresponds to the the density of probability to get a measurement between the A and A + dA. For
that purpose we compute the frequency of occurrence of the latter data values. In a spatially extended
system:

p(A) =< δ(A−A′) > ∼
∫
Atot

dA′ c(A′)δ(A−A′) = c(A) (2)

Where angular brackets represents surface averaging and c(A) is the cluster of area A concentration,
which, therefore, coincides with the defined PDF.
The obtained concentration distribution c(A) is not linear (see Fig. 4).

In order to determine whether this distribution follows a power or an exponential law, we plot the
distribution versus the clusters size with a semi-log or log-log scale. If the experimental points are
distributed as a straight line in semi-log scale (resp. log-log scale) this means that the distribution
follows an exponential law (resp. power law). In fact the collected data display a power law decay
with the characteristic exponent αA = 2.55 .

In the further parts of this report we will mainly use a concentrations distribution of clusters as a
function of volume. We name r the number of bacteria constituting a cluster, and consider an elemen-
tary volume of one bacteria V0 = 1 µm. So we get the volume of a cluster of size r: Vr = rV0 = r. From
now on we will refer to r as to the volume of a cluster of r monomers. Since the further investigations
rely on numerical models, we will use arbitrary units.

Starting from the concentration distribution as a function of the area A (c(A)), the plot of c as
a function of the volume r (c(r)) and the radius R (c(R)) is obtained via the change of variables:
c(X) = c(A) dAdX , where X refers either to the volume r or the radius R. The derivative dA

dX is calculated
by assuming a spherical shape for the aggregates, that is:{

A = 4πR2

r = 4
3πR

3 =⇒
{

R ∼ r1/3

A ∼ R2 ∼ r2/3 (3)

3
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Figure 5: Averaged concentrations distribution of clusters c (10 measurements) as a function of the
volume r (a) or the radius R (b) of bacterial clusters. The black dashed lines are fits which correspond
to power laws r−αr , αr ∼ 2 and R−αR , αR ∼ 4.

Assuming c(A) ∼ A−αA we get for c(r):

c(r) = c(A)
dA

dr
∼ (r2/3)−αAr−1/3 ∼ r−(1/3)(αA+1) ∼ r−αr (4)

Similarly we get c(R) ∼ R−2αA+1 ∼ R−αR . The numerical application with αA = 2.55 involves αr ∼ 2
and αR ∼ 4. The results are presented in Fig. 5. From now on we write c(A) := cA, c(r) := cr to
simplify notations. Finally the distribution we will seek to model in this project is the power law
which follows cr ∼ r−αr ∼ r−2 . In order to understand the underlying mechanisms for the formation
of these microbial aggregates, we will study, implement and develop some aggregation-fragmentation
models.

Let us move onto a first model which builds on the celebrated Becker-Döring equations [1]. This
simplified model allows a first approach of coagulation processes and eases analytical calculations.

3 A simplified model for analytical studies: Becker-Döring aggregation-
fragmentation equations

3.1 Formulation

According to the Becker-Döring equations, the loss or gain of a single particle at a given time takes
place [1] (with respect to the schematic of Fig. 2, s = 1):

Cr + C1 
 Cr+1 (5)

where Cr denotes a cluster composed of r fundamental units.

Remark: The Becker-Döring and Smoluchowski equations (as we will see) are typically considered for
an infinite maximum cluster’s size nc →∞. Nevertheless we consider in this project a finite maximum
cluster’s size nc, both for physical reasons (bacterial clusters can not have an infinite size because of
space and food supplies) and numerical reasons (the implementation requires limits).

If the clustering occurs with an aggregation rate ar and fragmentation rate br+1 (also referred as
aggregation and fragmentation kernels), and cr denotes the concentration at time t of clusters Cr, the

4
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Figure 6: Diagram showing the physical meaning of each term of the Becker-Döring equations. A
and F refer to respectively the aggregation and fragmentation processes. The aggregation process is
represented from left to right: a cluster Cr−1 and a monomer (one bacteria) C1 can coagulate to form
a cluster Cr, which also can aggregate with an other monomer to become a cluster Cr+1. Similarly,
the fragmentation process is represented from right to left. cr(t) refers to the concentration of clusters
of r monomers. ar and br are respectively the aggregation and fragmentation rates. Jr−1(t) is the net
rate at which clusters of size r are created from clusters of size r− 1, and Jr(t) is the net rate at which
clusters of size r + 1 are created from clusters of size r. The variation of cr(t) is a balance between
processes which increase or decrease the concentration of clusters of size r.

law of mass action yields for the concentrations {cr(t)}ncr=2 the equations:

dcr
dt

= Jr−1(t)− Jr(t) (r ≥ 2) (6)

Where the fluxes Jr(t) are defined by

Jr(t) = arcr(t)c1(t)− br+1cr+1(t) (7)

This quantity is the net rate at which clusters of size r+1 are created from clusters of size r. The Fig. 6
sums up the meaning of each term of the equations. Jr−1(t) stems from the aggregation-fragmentation
process which forms or splits a cluster of volume r. This corresponds to the process:

Cr−1 + C1 
 Cr (8)

Jr(t) corresponds to the aggregation-fragmentation process which forms or splits a cluster of volume
r + 1. This originates from the process:

Cr + C1 
 Cr+1 (9)

The total mass of the system is defined as:

M(t) =

nc∑
r=1

rcr(t) (10)

We here impose the mass conservation M(t) = M0, where M0 is the initial mass of separated bacteria
(monomers), with the condition on the mass of monomers:

M1(t) = c1(t) = M0 −
nc∑
r=2

rcr(t) (11)

We first implement the model and test it for already known analytical solutions, in order to verify a
coherence between mathematical developments and numerical implementation.

5
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Figure 7: Numerical simulation of the Becker-Döring model with constant kernels ar,s = a0, br,s = b0.
(a) Temporal evolution of each cluster’s size, represented by a different line’s colour. The final state is
an equilibrium state. (b) Asymptotic clusters concentration cr. The red dots correspond to numerical
values, the blue line corresponds to the analytical solution (see eq. (12)). Furthermore the straight
behaviour with the semi-log scale highlights that cr follows an exponential law.

3.2 Implementation of an analytical solution for constant kernels, ar = a0, br = b0

Ideally, the aim is to solve explicitly the system of ordinary differential equations. However for many
physically relevant aggregation and fragmentation rates ar and br the system is too complicated. Nev-
ertheless we can study if there is convergence to an equilibrium or a steady-state.

Remark: The term ’steady-state’ corresponds to Jr = Jr−1, while ’Equilibrium’ refers to Jr = 0
for each r. In this research project, in order to discriminate for numerical results whether a state is
equilibrium or steady-state, we compare the minimum of dcr

dt and Jr with a threshold value ε. If the
condition min(dcrdt , J)< ε is satisfied, that means that the state would be at equilibrium (min = Jr) or
steady (min = dcr

dt ).

For a simple case we consider the following conditions: equilibrium state and ar = a0, br = b0
constants.

The known solution [1] is written:

ceq,r =
(ac1

b

)r−1
c1 := θr−1c1 (12)

with

c1 =
A−
√
A2 − 4BM

2B
(13)

A = 1 + 2a/bM ; B =
a2

b2
(14)

θ = ac1
b is a useful measure of the relative strength of aggregation to fragmentation. If θ < 1 fragmen-

tation dominates aggregation, and inversely. Furthermore ceq,r converges if θ < 1.
Remark: The used computational language matlab is affected by numerical error for values below

10−15. In this case the distribution decays exponentially and so achieves very small values. In order
to be sure that there is no artefact due to this numerical limit, we fixed initial conditions c(t = 0)
larger enough for the script, and then scale again for plots. This justifies the small values displayed on

6
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Fig. 7, 11.

After a transition regime, the system achieves an equilibrium state (Fig. 7). The numerical implemen-
tation well reproduces the analytical solution (exponential law, see eq. (12)) provided the consistency
of ar, br and the condition θ = ac1

b < 1. By this way we have checked that the model has been correctly
implemented.

Nevertheless the experimental data display not an exponential but a power law cr ∼ r−2.
We will now study analytically the Becker-Döring equations in order to determine which conditions
could allow to get the power law distribution we are looking for.

3.3 Developments: Becker-Döring analytical solutions

3.3.1 Analytical kernels ar, br to get cr ∼ r−α for a steady-state:

In the case of the system being in a steady-state, that is dcrdt = 0, we are search what kind of aggregation-
fragmentation rates ar, br could involve cr = c1r

−α (steady-state solution), where α is a general power.
The Becker-Döring equations (eq. (6)) imply ∀r ≥ 2:

dcr
dt

= 0⇔ Jr−1 = Jr ⇔ arc1cr − br+1cr+1 = ar−1c1cr−1 − brcr (15)

⇐⇒ arc1r
−α − br+1(r + 1)−α = ar−1c1(r − 1)−α − brr−α (16)

One trivial solution of this equation would be:{
ar = a0

c1
rα

br = b0r
α (17)

with a0, b0 are arbitrary constants. Furthermore c1 can be determined invoking mass conservation
condition:

c1 = M0 −
nc∑
r=2

rcr = M0 − c1

nc∑
r=2

r1−α (18)

⇐⇒ c1 = M0

(
1 +

nc∑
r=2

r1−α

)−1

(19)

We test numerically this analytical solution (see Fig. 8). The numerical results correspond to the
expected solution. Nevertheless this solution is only one possibility which satisfies our conditions. We
will then search a general solution for cr for such kernels ar, br in the more restrictive case of an
equilibrium state.

3.3.2 General solutions for equilibrium, kernel ar = a0r
α, br = b0r

α

We seek to determine cr for kernels ar = a0r
α, br = b0r

α.

Calculation with perturbation: At equilibrium, ∀r ≥ 2, Jr = 0 (consequently c1(t) is constant).
Furthermore we consider ar = a0r

α, br = b0r
α. So we get:

Jr = 0 = a0r
αcrc1 − b0(r + 1)αcr+1 ⇐⇒

cr+1

cr
=
a0c1

b0

(
r

r + 1

)α
(20)

We write θ = a0c1
b0

. By setting cr+1 ∼ cr + c′r, where c′r is a small perturbation, we have:

c′r
cr

= θ

(
r

r + 1

)α
− 1 = θ

(
1

1 + 1
r

)α
− 1 ∼ θ

(
1− α

r

)
− 1 (21)

7
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Figure 8: Numerical simulation of the Becker-Döring model for a steady-state with kernels ar = a0
c1
rα,

br = b0r
α. Asymptotic clusters concentrations and analytical solution cr = M0

(
1 +

∑nc
r=2 r

1−α)−1
r−α

(dashed black line).

thanks to a Taylor expansion (r � 1). After integration (continuous limit):

ln

(
cr
c1

)
= (θ − 1)(r − 1)− αθ ln(r) and finally: cr = c1e

(θ−1)(r−1)r−αθ = κ1r
−αθe(θ−1)r (∗) (22)

Where κ1 = c1e
1−θ (23)

We here recognise the expression of a Gamma distribution: 1
Γ(k)φk

rk−1e
− r
φ . By identification:

1
Γ(k)φk

= c1e
θ−1

k − 1 = −αθ
1
φ = 1− θ

(24)

It is possible to determine numerically c1. In fact the eq. (??) is a self-consistent equation. If we define
a function f(x) = x −M0 −

∑nc
r=2 rcr, we can search for which values x we get f(x) = 0, since c1

should satisfy f(x) = 0 .

Solution with a test function: As an exercise we can also substitute the expression of the Gamma
distribution directly at the step just before the approximation, that is:

cr+1

cr
= θ

(
r

r + 1

)α
=⇒ (r + 1)k−1e

− r+1
φ

rk−1e
− r
φ

=

(
r + 1

r

)k−1

e
− 1
φ := θ

(
r

r + 1

)α
(25)

So by identification, one possibility is: {
k − 1 = −α
1
φ = − ln(θ)

(26)

So an other solution using this test function but without approximation would be:

cr =
1

Γ(k)φk
rk−1e−r/φ =

1

Γ(1− α)
(− ln(θ))1−αr−αer ln(θ) = κ2r

−αθr (∗∗) (27)

with κ2 =
1

Γ(1− α)
(− ln(θ))1−α (28)

8
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Figure 9: Numerical simulation of the Becker-Döring model with kernels ar = a0r
α, br = b0r

α.
Asymptotic clusters concentrations cr and analytical solutions (dashed magenta and blue lines), for
α = 0.5. The asymptotic state is an equilibrium state. The numerical values follow both analytical
solutions, corresponding to a Gamma distribution.

We have the following conditions on the Gamma distribution parameters [8]:{
k > 0⇐⇒ α < 1
φ > 0⇐⇒ θ < 1

(29)

Interestingly we retrieve the fact that the ratio between aggregation and fragmentation should respect
θ < 1 to achieve an equilibrium state.

If we want to find c1 analytically we have:

c1 =
(−1)α−1

Γ(1− α)
ln

(
a0c1

b0

)
a0c1

b0
⇐⇒ c1 =

b0
a0
exp

(
−(Γ(1− α)

b0
a0

)
1

1−α

)
(30)

We then test numerically these analytical results (see Fig. 9).
The numerical values follow both analytical solutions, corresponding to a Gamma distribution.

Apart from microbial clustering, it is interesting to point out the fact that such Gamma distribu-
tions are observed for distributions of the size of pores in porous media. So we could propose the
Becker-Döring model with kernels ar = a0r

α, br = b0r
α to be an explanation for the formation of

porous media, substituting bacteria with typical grains. This hypothesis is physically consistent in the
sense that porous media would be formed by a progressive input of elementary particles, thus justifying
the loss or gain of a single particle in each aggregation-fragmentation process.

Even if the Becker-Döring model yields a somehow artificial power law distribution for clusters sizes,
as the one we search, it is too simplified and does not reflect the real physical process that is at play
in the scrutinised sample. In fact aggregation can also take place between clusters of different sizes.
Furthermore we have so far considered also the fragmentation process, which is unlikely to happen in
case of formation of microbial aggregates. Once bacteria are aggregated in a cluster, they do not split.
That is why we now move onto a second set of equations to describe the aggregation process between
bacteria: the Smoluchowski model.

4 Smoluchowski coagulation equations

Smoluchowski coagulation equation describes the kinetics of the process of binary aggregation. Con-
sider a well-stirred vessel in which clusters of a variety of sizes move about and occasionally collide

9
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Figure 10: Diagram showing the physical meaning of each term of the Smoluchowski equations. A
refers to the aggregation process. The aggregation process is represented from left to right: two clusters
Cr−s and Cs can coagulate to form a cluster Cr, which also can aggregate with an other cluster of size
s, Cs, to become a cluster Cr+s. cr(t) refers to the concentration of clusters of r monomers. ar is the
aggregation rate, or kernel. The first sum corresponds to all the aggregation processes which form a
cluster of volume r. The second sum corresponds to all the aggregation processes which form a cluster
of volume r + s. The variation of cr(t) is a balance between processes which increase or decrease the
concentration of clusters of size r.

and coalesce with each other. A set of differential equations models how the cluster-size distribution
changes over time.

4.1 Formulation

The process of aggregation between two clusters Cr and Cs,respectively composed of r and s funda-
mental units, obeys:

Cr + Cs → Cr+s ∀ r, s ≥ 1 (31)

We here consider only binary fragmentation. We denote the aggregation rate by ar,s, also referred as
"aggregation kernel" or simply "kernel". We apply the law of mass action, which yields the equations
(for nc the maximum cluster’s size):

dcr
dt

=
1

2

r−1∑
s=1

as,r−scs(t)cr−s(t)−
nc−r∑
s=1

ar,scr(t)cs(t) (r ≥ 2) (32)

We get the equation for the monomer concentration by ignoring the first sum in eq. (32).

dc1

dt
= −

nc−1∑
s=1

a1,sc1(t)cs(t) (33)

Remark: In case of a finite maximum cluster’s size nc, these equations conserve the mass.

Fig. 10 sums up the meaning of each term of the equations. The first sum corresponds to all the
aggregation processes which form a cluster of volume r. This corresponds to the process:

Cr−s + Cs → Cr (34)

The 1/2 factor allows to correct for the double counting of the first sum.

The second sum corresponds to all the aggregation processes which form a cluster of volume r + s.
This corresponds to the process:

Cr + Cs → Cr+s (35)

10
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4.2 Implementation of an analytical solution

A solution for the Smoluchowski equations is, in general, not known. However in some special cases,
they admit analytical solutions [1].

Multiplicative kernel: ar,s = rs. Here we focus on an analytical power law distribution cr ∼ r−5/2,
which could well model the experimental data. The theoretical expressions for such kernel are [1]:

cr(t) ∼

{
e−r(t−1−log(t))

r5/2t
√

2π
t < tg = 1

1
r5/2t

√
2π

t ≥ tg = 1
(36)

Where tg is the gelation time, which corresponds in the case of an infinite maximum cluster size nc →∞
to the earliest moment where conservation of the total mass fails: tg := inf{t > 0 : M(t) < M(0)}. In
our case where nc is a finite number, we set:

M ′(t) =

nc−1∑
r=1

rcr(t) (37)

and consider that the definition of tg occurs for M ′. In fact for a finite size system the mass does not
go to infinity but in the biggest cluster size class Cnc.

The numerical results are consistent with the expected calculations (see Fig. 11). The obtained
distribution follows cr ∼ r−5/2, where r represents the volume. If this model was supposed to explain
the experimental data, cA ∼ A−5/2, it would mean that the aggregates had a flat shape, like the section
of a cylinder, so that A ∼ r (see Fig. 12).

We have so far considered a fixed number of bacteria, that is a constant mass M(t) = M0. Nev-
ertheless bacteria are not passive particles and grow when they are in a suitable environment, which
is the case in the previously described experiment (see section 2).

4.3 Developments: Smoluchowski model and microbial growth

4.3.1 Classical logistic model for bacteria (monomers)

The model has been incomplete so far, since it has not taken into account the ability of bacteria to
multiply, which is observed in the considered experiment. In fact in case of non-aggregated bacteria
the growth of a bacterial population obeys the logistic model [9] (see Fig. 13). Here we do not take
into account the death phase, since this has not been observed in the experiment we consider. In case
of non-aggregated bacteria (monomers) the logistic model thus obeys the following law:

dM

dt
= KM(t)

(
1− M(t)

M∞

)
(38)

Where M denotes the mass of bacteria, K the growth rate, which is the inverse of the doubling time
td = 1/K, which is the characteristic time at which all bacteria divide. M∞ is the carrying capacity
of the system, or the maximum biomass that the system can sustain: once it is reached, the growth
stops due to depletion of nutrients and space availability.

4.3.2 Logistic model for bacterial clusters: first equations (growth of a whole cluster)

In the context of coagulation between bacteria, we have to modify the form of this logistic model, in
order to take into account the binary division of individual cells for every cluster’s class. We propose
the following equations, with Ar corresponding to the aggregation terms previously described (see

11
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Figure 11: Numerical simulation of the Smoluchowski model with kernel ar,s = rs. (a) Temporal
evolution of each cluster’s size, (b) Asymptotic clusters concentration cr and analytical solution (dashed
black line), (c) Temporal evolution of the clusters concentration cr, and corresponding analytical
solutions (dashed black lines), (d) Temporal evolution of the total mass (M) and mass excepted for
the maximum cluster’s size nc (M’). The expected analytical decay at the gelation time tg occurs for
M ′ and not M , due to the finite size of the simulation.

Figure 12: Diagram illustrating the meaning of distributions laws. We know that cA ∼ A−5/2. The
distribution of clusters volumes cr depends on the shape of aggregates (due to the relation between
the area A and the volume r). If aggregates had a flat shape (left side), it would mean that the area A
has the same dependence than the volume r, which involves cr ∼ r−5/2 (as we studied in this section).
On the opposite if aggregates had a spherical shape (right side), it would mean that the dependence
is A ∼ r2/3, which involves cr ∼ r−2 (see section 2). The experiment does not allow to distinguish the
two possibilities, since measurements are made with a microscope which has access to a limited plane
field of view.
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Figure 13: Logistic model modelling bacterial growth (in classical case of separated bacteria). When
bacteria are injected in a suitable medium, after a latency period they multiply until a maximum value
(stationary state) and finally die because of the lack of nutrients.

(a) (b)

Figure 14: (a) Diagram illustrating the growth for each case. For monomers (left side), a bacterium
divides and leads to two separated bacteria. Right side: If r ≤ nc/2, there are two possibilities: If the
number of bacteria r of a cluster is odd (top) it is only possible for it to grow, becoming a cluster of
size 2r. However if this number r is even (bottom), it can grow and be supplied by the class of clusters
r/2. Finally since we impose a finite maximum cluster’s size nc, if r > nc, it is not possible for the
clusters to grow anymore. Otherwise the resulting cluster 2r would exceed the limit nc. (b) Diagram
displaying the case r even and r > nc. We can observe that r can be supplied by the cluster class r/2
but cannot grow on order not to exceed the maximum cluster’s size nc.

eq. (32)):

dcr
dt

= Ar(t) +K

(
1− M(t)

M∞

)


{
c1

− c2{
(cr/2 − cr)
cr/2{
− cr
0

r = 1

r = 2

r even
r odd

r even
r odd

2 < r ≤ nc/2

nc ≥ r > nc/2

(39)

The Fig. 14 illustrates with a diagram the meaning of these different equations. For monomers, a
bacterium divides and leads to two separated bacteria, it thus increases only c1. Consequently c2 does
not increase by microbial growth. Then we consider a cluster Cr where all the r bacteria can divide in
the same time, which leads to a cluster C2r. This process Cr → C2r is expressed by the term −Kcr.
Furthermore for even r clusters, Cr can also be formed by the microbial growth of a cluster Cr/2. This
process Cr/2 → Cr is expressed by the term +Kcr/2. Actually, assuming binary division with constant
rate for cell reproduction, only even r clusters can be formed by microbial growth.

13
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Furthermore because of the finite maximum cluster’s size nc of the system, a cluster can not be
bigger than nc. This consideration suggests to distinguish the clusters which can double their sizes
(r ≤ nc/2) from them which can not (r > nc/2), since otherwise they would exceed the limit nc.

The term 1 −M(t)/M∞ is the exact equivalent as for the logistic model for monomers. When the
entire mass of the system achieves the valueM∞ the growth stops, this is the system carrying capacity
(see Fig. 13).

4.3.3 Analytical developments

In order to compare with the classical logistic model, we want to find the analytical expression for the
mass M(t). For that purpose we determine dM(t)

dt . For nc even :

dM(t)

dt
=
d

dt

nc∑
r=1

rcr =

nc∑
r=1

r
dcr
dt

(40)

=
dc1

dt
+ 2

dc2

dt
+

nc/2∑
r=3

r
dcr
dt

+

nc∑
r=nc/2+1

r
dcr
dt

(41)

=
dc1

dt
+ 2

dc2

dt
+

nc/4∑
p=2

(2p)
dc2p

dt
+ (2p− 1)

dc2p−1

dt
+

nc/2∑
p=nc+2

4

(2p)
dc2p

dt
+ (2p− 1)

dc2p−1

dt
(42)

= K

(
1− M(t)

M∞

)c1 − 2c2 +

nc/4∑
p=1

(2p)(cp − c2p)− (2p− 1)c2p−1 +

nc/2∑
p=nc

4
+1

(2p)cp + 0


(43)

= K

(
1− M(t)

M∞

)c1 − 2c2 +

nc/2∑
p=2

(2p)cp −
nc/4∑
p=2

(2p)c2p + (2p− 1)c2p−1

 (44)

= K

(
1− M(t)

M∞

)c1 − 2c2 + 2

nc/2∑
r=2

rcr −
nc/2∑
r=3

rcr

 (45)

= K

(
1− M(t)

M∞

)c1 − 2c2 +

nc/2∑
r=2

rcr + 2c2

 (46)

= K

(
1− M(t)

M∞

) nc/2∑
r=1

rcr (47)

Finally:

dM

dt
= K

(
1− M(t)

M∞

)M(t)−
nc∑

r=nc/2+1

rcr

 (48)

Similarly with the case nc odd we get:

dM

dt
= K

(
1− M(t)

M∞

)M(t)−
nc∑

r=(nc−1)/2

rcr

 (49)
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As an exercise we also can find (nc even):

nc∑
r=1

dcr
dt

=
dc1

dt
+
dc2

dt
+

nc/2∑
r=3

dcr
dt

+

nc∑
r=nc/2+1

dcr
dt

(50)

=
dc1

dt
+
dc2

dt
+

nc/4∑
p=2

dc2p

dt
+
dc2p−1

dt
+

nc/2∑
p=nc+2

4

dc2p

dt
+
dc2p−1

dt
(51)

= K

(
1− M(t)

M∞

)c1 − c2 +

nc/4∑
p=1

(cp − c2p)− c2p−1 +

nc/2∑
p=nc

4
+1

cp + 0

 (52)

= K

(
1− M(t)

M∞

)c1 − c2 +

nc/2∑
p=2

cp −
nc/4∑
p=2

c2p + c2p−1

 (53)

= K

(
1− M(t)

M∞

)c1 − c2 +

nc/2∑
r=2

cr −
nc/2∑
r=3

cr

 (54)

= K

(
1− M(t)

M∞

)
(c1 − c2 + c2) (55)

Finally:
nc∑
r=1

dcr
dt

= K

(
1− M(t)

M∞

)
c1 (56)

We get the same solution for the case nc odd.

4.3.4 Implementation and numerical results

Smoluchowski equations with a multiplicative kernel: ar,s = rs: We here consider the same
case than in the previous section 4.2, and we add the logistic model for clusters terms.

The addition of the microbial growth phenomenon arises a similar power law behaviour (see
Fig. 15(a)). In the classical model cr follows the law r−5/2. The addition of the logistic model for
clusters changes this law as cr ∼ r−1.89, which is nearer the law we are looking for: r−2.

Without logistic model terms, the mass is conserved as expected (see Fig. 15(b)). The numerical
results follow the analytical solution. For short times the mass of the logistic model for clusters fol-
lows the classical logistic model. For longer times, the contribution of biggest clusters becomes more
important, that is

nc∑
r=nc/2+1

rcr (57)

(see eq. (48)). This term decreases the mass M(t) and represents the difference between the mass
evolution for a monomeric or clustered system.

So far we have considered that all the bacteria in a cluster multiply, however we could also con-
sider that in such a biofilm only the bacteria at the surface of a cluster have access to food and place
enough to multiply.

4.3.5 Logistic model for bacterial clusters: second equations (growth of the surface)

To determine the number of bacteria at the surface of a cluster, we still consider spherical aggregates.
Which involves that the area of a cluster goes as r2/3. We modify the former logistic model by
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Figure 15: Numerical simulations for the Smoluchowski model without (blue) or with (red) the logistic
model equation eq. (39). (a) Asymptotic clusters concentrations. The straight behaviour with a log-log
scale highlights a power law. In the classical model cr follows the law r−5/2. The addition of the logistic
model for clusters changes this law as cr ∼ r−1.89, which is nearer the law we are looking for: r−2. (b)
Temporal mass evolution. Without logistic model terms (blue line), the mass is conserved as expected.
The numerical results (red line) follow the analytical solution (black line). For short times the mass
of the logistic model for clusters follows the classical logistic model (green line). For longer times the
contribution of biggest clusters becomes more important, which explains the difference between the
model for monomers and clusters (see eq. (48)).

considering that for the clusters bigger than a characteristic size Tc only the bacteria at the surface can
multiply (we consider Tc < nc/2). However smaller clusters still grow following the previous equations
(eq. (39)), that is every bacterium divides.

dcr
dt

= Ar(t) +K

(
1− M(t)

M∞

)


{
c1

− c2{
(cr/2 − cr)
cr/2{
(cr−r2/3 − cr)
cr−r2/3

r = 1

r = 2

r even
r odd

r ≤ nc − n2/3
c

r > nc − n2/3
c

2 < r ≤ 2Tc

nc ≥ r > 2Tc

(58)

We observe a similar consequence on clusters concentrations (see Fig. 19 in Annexes), but with a
slightly different value of the power, which is not −5/2 anymore. This value changes depending on the
value of Tc. For the highest value of Tc = bnc/2c, we get a power −1.93, which is nearer the one we
search to model: −2.

We finally have found a model which is physically consistent and allows to model the experimen-
tal distribution of clusters sizes, which was our starting point. Finally we will study what impact on
the kinetics of Mn have these clusters of bacteria.
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5 Impact on the kinetics of Mn

5.1 A kinetic equation for the mineralisation of Mn by clustered bacteria

As a first approximation the kinetics of the mineralisation of Mn can be considered as a first-order
reaction [4] [5]. In case of separated bacteria (monomers), we write:

dcM
dt

= −Kmc1cM (t) (59)

Where c1 is the concentration of bacteria (monomers), cM refers to the concentration of Mn in [g.mL−1],
Km is the reaction rate constant, its unit is [t−1]. However we here also consider the clustering process
between bacteria. This phenomenon implies a different Km for each cluster’s size, since only the
bacteria at the surface of a cluster can react and catalyse with the Mn elements. That is why we write:

dcM
dt

= −

(
nc∑
r=1

Krcr

)
cM (t) with Kr = r2/3Km, ∀r > 1 (60)

since we consider spherical aggregates, the surface goes as A ∼ r2/3, where r represents both the
volume and the number of monomers.

5.2 Analytical solutions for the concentration of Mn (Smoluchowski model)

We study this equation for the case of the Smoluchowski model with a multiplicative kernel ar,s = rs
(see section 4.2), since it is the best model we have found. Firstly, we can characterise analytically cM .
We distinguish the cases t < tg = 1 and t > tg = 1 (see eq (36)).

For t < tg = 1:

dcM
dt

=−

(
nc∑
r=1

Kmr
2/3cr

)
cM (t) (61)

= −

(
nc∑
r=1

Kmr
2/3 1

t
√

2π
r−5/2e−r(t−1−log(t))

)
cM (t) (62)

= − Km√
2π

(
nc∑
r=1

r2/3−5/2ere−rttr−1

)
cM (t) (63)

We write:

Ir(t) =

∫ t

0
du e−ruur−1 (64)

After a change of variables v = ru we get:

Ir(t) =

∫ t

0

dv

r
e−v

vr−1

rr−1
= r−r

∫ t

0
dv re−vvr−1 = r−rγ(r, t) (65)

Where γ(r, t) is the lower incomplete gamma function. Finally:

cM (t) = cM (t = 0)exp

(
− Km√

2π

(
nc∑
r=1

r2/3−5/2−rerγ(r, t)

))
, t < tg = 1 (66)
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Figure 16: Numerical simulations of the temporal evolution of the concentration of Mn in presence
of clustered bacteria. We used the Smoluchowski equations (see section 4.3) to model the microbial
clusters distribution, without or with the microbial growth. The red dots represent numerical results,
the magenta line refers to a solution for bacterial monomers cM (t) = cM (t = 0)exp(−Kmt). The blue
line corresponds to the analytical solution (66), (71), for the case without microbial growth. Without
microbial growth, numerical results follow the analytical solution. When microbial growth is taken into
account, the distribution seems to be exponential, but with a different exponent than for the classical
case for monomers.

For t > tg = 1:

dcM
dt

=−

(
nc∑
r=1

Kmr
2/3cr

)
cM (t) (67)

= −

(
nc∑
r=1

Kmr
2/3 1

t
√

2π
r−5/2

)
cM (t) (68)

= − Km√
2π

(
nc∑
r=1

r2/3−5/2

)
1

t
cM (t) (69)

= −f(r)
1

t
cM (t) (70)

Then

cM (t) = cM (t = tg)(t/tg)
−f(r) with f(r) =

Km√
2π

(
nc∑
r=1

r2/3−5/2

)
, t > tg = 1 (71)

5.3 Implementation and numerical results

In Fig. 16 we observe that without microbial growth, numerical results follow the analytical solution.
When microbial growth is taken into account, the distribution seems to be exponential, but with a
different exponent than for the classical case for monomers.

Finally it seems that bacterial clustering slows the decrease of the Mn concentration cM , that is
the mineralisation process. On the opposite the microbial growth process seems to fast the speed of
the reaction.
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6 Conclusion

6.1 Models to explain the dynamics of bacteria aggregation

Starting from experimental data, we have developed different models to characterise the observed
experimental distribution of clusters areas. Considering spherical aggregates, we showed that the dis-
tribution law cA ∼ A−αA , corresponds to cr ∼ r−(2αA+1)/3 = r−αr . The experimental distribution gives
αr ∼ 2. Both Smoluchowski and Becker-Döring equations allow to model power laws following the
desired distribution. However, the most physically sound model which allows to retrieve the expected
distribution is the Smoluchowski model with a multiplicative kernel and considering microbial growth.

The kinetics of precipitation of Mn is modified depending on two distinct considerations: if bacte-
ria are separated or organised in clusters, and if microbial growth is taken into account. It seems that
bacterial clustering slows the decrease of the Mn concentration, that is the mineralisation process. On
the opposite the microbial growth process seems to fast the speed of the reaction.

6.2 A model to explain the formation of porous media

On the other hand we have developed analytical solutions for the Becker-Döring model, leading to the
aggregate size concentration cr following Gamma distributions. Interestingly for porous media, it has
been observed that the distribution of the pores sizes also follows a Gamma distribution. That is why
we could suggest that the formation of porous media is made via a process which could be modelled by
the Becker-Döring equations (following the conditions we determined). In fact instead of considering
bacteria for our elementary particles, it could be grains of sand which would be progressively deposited
on the medium in formation. This progressive deposit would justify the use of a model considering
aggregation-fragmentation processes only with the gain or the loss of a single particle.

6.3 Limits and perspectives

The model we developed could be improved on some points. Firstly the way we define the equations of
the logistic model for clusters could be more precise, in order to better model the suspected physical
phenomenon. Secondly, it would be interesting to continue to study the kinetics of Mn in presence of
microbial aggregates, since bacteria can be organised in clusters in the soil.
Then, the link between the Becker-Döring model and the formation of porous media could be investi-
gated more in depth.
Furthermore, we have considered so far that aggregates had a spherical shape. Nevertheless this hy-
pothesis could be challenged out, further studies could be focused on determining the precise shape of
such bacterial aggregates.
Finally it is also interesting to point out the fact that the suitable kernels are of the form ar = a0r

α,
where α could characterise a physical phenomenon. It should be interesting to investigate this fact
into more details.
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7 Annexes

7.1 Becker-Döring model and microbial growth:

We add the logistic model terms, as for the Smoluchowski model, to the Becker-Döring model for a
steady-state and ar = a0r

α, br = b0r
α.

10 0 10 1 10 2
10 0

10 5

Figure 17: Numerical simulations for the Becker-Döring model without (blue) or with (red) the logistic
model. α = 5/2. Numerical values αN are very near the exact value 5/2.

We observe a similar behaviour between the situation with or without logistic model terms. The
only difference lays in the total mass of the system, which rises the values of clusters concentrations
when microbial growth is considered.

7.2 Smoluchowski model with fragmentation, constant kernels: ar,s = a0, br,s = b0.

Firstly, as a test to verify if the equations have been correctly implemented, we focus on this particular
case with constant kernels for which an exponential distribution is expected at equilibrium.

Remark: The equilibrium state, ∀r,Wr,s = 0, should be distinguished from the steady-state, which
is the general case ∀r, dcrdt = 0. In this research project, in order to discriminate for numerical results
whether a state is equilibrium or steady-state, we compare the minimum of dcrdt and

∑nc
r=1Wr,s with a

threshold value ε. If the condition min(dcrdt ,
∑nc

r=1Wr,s)< ε is satisfied, that means that the state would
be at equilibrium (if min =

∑nc
r=1Wr,s) or steady (min = dcr

dt ).
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Figure 18: Numerical simulation of the Smoluchowski model with kernels ar,s = a0, br,s = b0. (a)
Temporal evolution of each cluster’s size, (b) Asymptotic clusters concentration cr. The straight
behaviour with the semi-log scale highlights an exponential decay

The straight behaviour with a semi-log scale plot highlights an exponential decay, which is consis-
tent with the expected calculated results of our reference article [1]. This confirms that the model has
been correctly implemented.

We then move onto models which could fit the experimental distribution we get.

7.3 Analytical kernels for the Smoluchowski equations

Our aim is to find parameters, especially kernels ar,s, br,s, in order to get cr ∼ r−α , with α = 2.
Starting from this, and considering an equilibrium state, that is

Wr,s = 0 (72)

By substituting cr = c1r
−α we have

ar,sc1r
−αs−α = br,s(r + s)−α (73)

We find a trivial solution for the aggregation and fragmentation rates:
ar,s = a0(rs)α

br,s = b0(r + s)α

a0c1 = b0 ⇐⇒ θ = 1
(74)

These conditions on kernels should allow to get a power law distribution of clusters volumes cr ∼ r−α.
Nevertheless we do not have a way to determine exactly the equilibrium value of c1, that is why we do
not succeed in obtaining a numerical confirmation of this calculation.
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7.4 Smoluchowski model and microbial growth at the surface of clusters
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Figure 19: Numerical simulations for the Smoluchowski model without (blue) or with (red) the logistic
model equation eq. (58).(a) Asymptotic clusters concentrations. The straight behaviour with a log-log
scale highlights a power law. In the classical model cr follows the law r−5/2. The addition of the
logistic model for clusters changes this law as cr ∼ r−1.93, which is nearer the law we are looking for:
r−2. (b) Temporal mass evolution. Without logistic model terms (blue line), the mass is conserved
as expected. The numerical results (red line) follow approximately the analytical solution determined
for the previous equation 39 (black line). For short times the mass of the logistic model for clusters
follows the classical logistic model (green line). For longer times the contribution of biggest clusters
becomes more important, which explains the difference between the model for monomers and clusters
(see eq. (48)).
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